How to Win a Jar of Candy Corn: A Scientific Approach!

Published on
49,277 Points
13 Endorsements
Last Modified:
Kevin Cross
Father, husband and general problem solver who loves coding SQL, C#, Salesforce Apex or whatever.

How to Win a Jar of Candy Corn:
A Scientific Approach!

I love mathematics. If you love mathematics also, you may enjoy this tip on how to use math to win your own jar of candy corn and to impress your friends.

As I said, I love math, but I guess my recent encounters with Professor Keith Devlin (blog | twitter) and his massively open online course, Introduction to Mathematical Thinking, have made me overly prone to mathematical thinking. Hence, a simple game of "guess how much candy corn is in this container" turns into a mathematical excursion.

The winning method.
First attempt, the winner, was a straight-forward calculation of the volume of a cylinder, which is the product of the area of the circular surface — the top or bottom layer of candy corn — times the height of the cylinder. In other words, one must multiply the constant Pi times the squared radius, which is half the diameter, times the height.

Working from there, I approximated the jar to hold 10 candy corn both diagonally across (diameter) and deep (height). My 785 answer won the competition as it was closest to the "760" actual total.

 The Spoils of WarA more precise calculation.
Unsatisfied with the imprecision of my victory, I stared at my "spoils of war" until I noticed the jar curved inward at the top and bottom; therefore, the area of the top-most and bottom-most circle are smaller than my assumption of a uniform cylinder. Therefore, I attempted to approximate the candy corn with a more precise method. First, take away the ends (i.e., two rows of candy corn or [height - 2]), leaving a height of eight candy corn and yielding "628" candy corn in the middle. Subsequently, let's deal with the end rows.

By inspection, one can usually deduce if the top and bottom have the same constraints because of the curvature. Hence, the first step is to check the bottom (as most competitions will use a solid top cover). In my case, the jar had a covered bottom. Therefore, I used visual reference — yes, one could break out a ruler or use mirrors to get the exact count — to estimate the number of candy corn across (i.e., the diameter) the top or bottom as nine pieces or 90%. From that point, calculate twice the area of the circle, using a 4.5 candy corn radius, and add that result to the previous one. The final answer: "755" candy corn.

In summary, this trick — okay, systematic math approach — gets you within 99.3% of the correct quantity of candy corn in the jar. You may have one friend who will point out that "you [really] don't know." However, you will dazzle everyone else when you win the guessing contest and, in turn, the jar of candy corn.

Thank you for reading!

Best regards and happy mathematical thinking,

Kevin C. Cross, Sr. (mwvisa1)

 If you found this article enjoyable or interesting, please click the Yes button near the:

      Was this article helpful?

label that is just below and to the right of this text.   Thanks!
Author:Kevin Cross
LVL 38

Expert Comment

When I win the candy corn contests next year, I'll send you a 10% commission (even I can calculate 10%).

A fun way to learn some math (or maths as our cousins say).

"Yes" vote above.
LVL 76

Expert Comment

by:Alan Hardisty
Can't wait to use this on the guess the number of sweets in the jar competition at my kids Xmas fair at their school.  I'll let you know the outcome.

Yes vote from me too.

LVL 29

Expert Comment

by:Blue Street Tech
Terrific job!

...Searching for the next party w/a guessing game is involved! I might just bring my own kettle corn game so I can claim victory! wwhahahah (evil laugh) but then that would seem as though i were the fireman starting a fire to then put out. (gulp) :/

Featured Post

Free Tool: ZipGrep

ZipGrep is a utility that can list and search zip (.war, .ear, .jar, etc) archives for text patterns, without the need to extract the archive's contents.

One of a set of tools we're offering as a way to say thank you for being a part of the community.

Join & Write a Comment

Finds all prime numbers in a range requested and places them in a public primes() array. I've demostrated a template size of 30 (2 * 3 * 5) but larger templates can be built such 210  (2 * 3 * 5 * 7) or 2310  (2 * 3 * 5 * 7 * 11). The larger templa…
I've attached the XLSM Excel spreadsheet I used in the video and also text files containing the macros used below. https://filedb.experts-exchange.com/incoming/2017/03_w12/1151775/Permutations.txt https://filedb.experts-exchange.com/incoming/201…
Suggested Courses

Keep in touch with Experts Exchange

Tech news and trends delivered to your inbox every month