<

Go Premium for a chance to win a PS4. Enter to Win

x

Complex Number Matrix Representation

Published on
10,378 Points
4,178 Views
2 Endorsements
Last Modified:
Complex Numbers are funny things.  Many people have a basic understanding of them, some a more advanced.  The confusion usually arises when that pesky i (or j for Electrical Engineers) appears and understanding the meaning of a square root of a negative number.  Without having to understand all this, there is a way to do complex algebra (to an extent) without worrying about the i part of the equation.

Complex Matrix Representation
Many people have never used complex numbers in a matrix representation before.  This method allows for a different set of algebra possibilities.  For instance, if you want to divide a complex number by another complex number without going through the rigors of setting up the equation, simply multiply the inverse of the denominator complex times the numerator.  This is much simpler (for large sets of equations) than doing it by hand.

But where does this really help?  Software.  

It's much easier for a computer to deal with matrices than complex numbers.  Complex numbers require a separate class and defining all operators.  If you make complex numbers a matrix of real numbers, this process becomes ten times simpler to implement.

Granted there are some advantages to using complex numbers as a separate class.  Admittedly, performing certain operations on a matrix is difficult, like raising e to the matrix M power (in our case, a complex matrix).  Although, this is possible by the Taylor series, it's not as straightforward when doing it numerically.  

The four basic operators that are used most often are multiplication, division, subtraction, and addition.  All these can be done with matrix algebra.  The most difficult, of course, is the inverse.  For the sake of those that don't know how, I have also included a matrix showing the inverse of a complex number matrix.

Inverse of Complex Matrix
After knowing how to calculate the inverse, you can add, subtract, divide, and multiple any complex number in software without having to write a separate class.  Handy right?!

I hope this short article can help in future complex calculatory needs!

Justin
2
Comment
Author:Jcouls29
0 Comments

Featured Post

Free Tool: SSL Checker

Scans your site and returns information about your SSL implementation and certificate. Helpful for debugging and validating your SSL configuration.

One of a set of tools we are providing to everyone as a way of saying thank you for being a part of the community.

Join & Write a Comment

Although Jacob Bernoulli (1654-1705) has been credited as the creator of "Binomial Distribution Table", Gottfried Leibniz (1646-1716) did his dissertation on the subject in 1666; Leibniz you may recall is the co-inventor of "Calculus" and beat Isaac…
I've attached the XLSM Excel spreadsheet I used in the video and also text files containing the macros used below. https://filedb.experts-exchange.com/incoming/2017/03_w12/1151775/Permutations.txt https://filedb.experts-exchange.com/incoming/201…
Suggested Courses

Keep in touch with Experts Exchange

Tech news and trends delivered to your inbox every month