• Status: Solved
• Priority: Medium
• Security: Public
• Views: 298

# nietod...Help with algorithm

You solved the josephus algorithm i posted. I'm trying to implement it now with a circular linked list. An have no idea where to start it. this is the class im using:

#ifndef CIRCLIST_H
#define CIRCLIST_H

#include <iostream.h>

template <class T>
class CircularList {
public:
CircularList();
~CircularList();
int Add(T item);                     // return -1 if out of memory
int Remove(int index);
int Get(int index, T&item) const;    // return -1 if not gotten
int Empty() const { return size==0; }
int Size() const { return size; }
struct Node {
T data;
Node *left, *right;
};
private:
int size;
};

//----------------------------//
template <class T>
CircularList<T>::CircularList() {
size=0;
}

//----------------------------//
template <class T>
CircularList<T>::~CircularList() {
while (Size()>0) Remove(0);
}

//----------------------------//
template <class T>
Node *temp, *cur;
temp = new Node;                    // get a new node and fill with data
if (temp==NULL) { cout << "Out of memory for linked list node allocation: Add() failed." << endl; return -1; }
temp->data = item;

while(cur != head  &&  cur->data < temp->data) {
cur=cur->right;
}

temp->right = cur;
temp->left = cur->left;
cur->left->right = temp;
cur->left = temp;

return 1;
}

//----------------------------//
template <class T>
int CircularList<T>::Remove(int index) {
if (Empty() || index<0 || index>=Size() ) return -1;
Node *cur;
for (int i=0; i<index; i++) {
cur=cur->right;
}                                   // at end of loop, cur is pointing
// to the node to delete
cur->left->right = cur->right;
cur->right->left = cur->left;

delete cur;                         // free up space
return size;
}

//----------------------------//
template <class T>
int CircularList<T>::Get(int index, T &item) const {     // similar to Remove
if (Empty() || index<0 || index>=Size() ) return -1;
Node *cur;
for (int i=0; i<index; i++) {
cur=cur->right;
}                                   // at end of loop, cur is pointing
// to the node to get
item=cur->data;                     // transfer data
return 1;
}

//----------------------------//
template <class T>
int CircularList<T>::Find(T item) const {
if (Empty()) return -1;
int index=0;
cur=cur->right;
index++;
}
return (cur==head ? -1 : index);
}

#endif

0
milalik
• 3
1 Solution

Commented:
What exactly is the question?

I assume the josephus algorithm needs to store data (I'm not familar with the algorithm) so the data will be stored in this circular queue.
0

Commented:
I found the algorithm from your other question.

Since this is probably accademic, I can't give you the answer--that is unethical--but I'll give you some help to get you started.  Ask if you have questions or need more help.

Start with all the items in the queue  Then use a loop to remove items from the queue.  Each item removed is placed back in the queue until you come to an item that should be "skipped".  If the item should be skipped don't place it back in.  When you come to a case where you remove an item from the queue and the queue is left empty (i.e. there had been 1 item in the queue), then you are done.  The item you just removed is te last one.
0

Author Commented:
Okay so I add the items to the list in the main. Then perform the Remove with the conditions every m-time..and when the only one number ends I'm done?
0

Commented:
That's it.
0
Question has a verified solution.

Are you are experiencing a similar issue? Get a personalized answer when you ask a related question.

Have a better answer? Share it in a comment.