Still celebrating National IT Professionals Day with 3 months of free Premium Membership. Use Code ITDAY17


dynamic array of static sized strings

Posted on 2002-05-31
Medium Priority
Last Modified: 2010-04-15
I want to create a dynamic array of strings, each string of size 100.  I know I can use char **ppMyArray, allocate the number I want, and then allocate each pointer to size 100.  My question: Is there a way to create the array without the need to loop through and allocate each pointer to size 100?
Question by:marvinm
Welcome to Experts Exchange

Add your voice to the tech community where 5M+ people just like you are talking about what matters.

  • Help others & share knowledge
  • Earn cash & points
  • Learn & ask questions
  • 3
  • 3
LVL 16

Accepted Solution

imladris earned 800 total points
ID: 7047118
Sure. If you declare the array:

char (* dynarray)[100];

Then you can allocate as many elements as you want with:


Author Comment

ID: 7047144
how can I do the allocation to avoid
warning: assignment from incompatible pointer type?

Expert Comment

ID: 7047153
Can you put the string in a structure and dynamically create them?

typedef struct tagSTRING_THING
     char     strData[100];
Concerto Cloud for Software Providers & ISVs

Can Concerto Cloud Services help you focus on evolving your application offerings, while delivering the best cloud experience to your customers? From DevOps to revenue models and customer support, the answer is yes!

Learn how Concerto can help you.


Author Comment

ID: 7047154
a = (char (*)[100])malloc() seems to work
If I declare a char **, then I need to malloc num_elements * sizeof (char *), and then for each one num_elements*100
do I need to allocate num_elements * ((sizeof(char *)+100)?
Thank You
(this is the last part of my question)
LVL 16

Expert Comment

ID: 7047487
Almost. The declaration:

char (*a)[100];

is a pointer to an array of 100 characters. So what you are allocating is multiples of arrays of 100 characters. So the malloc would be:

a=(char (*)[100])malloc(numelements*sizeof(char)*100);

For calloc it would be:

a=(char (*)[100])calloc(numelements,sizeof(char)*100);

This is, for completeness, in contrast to:

char **a;

With this declaration a is a pointer to a pointer. Semantically you wind up treating them the same. But the memory layout is different. In the first case you have a single pointer to a block of memory that represents some number of 100 byte arrays. In the second case you have a pointer to an array (of some size) of pointers. Each of the elements in the "second" array then points to individual arrays of 100 bytes. So in the first case a location is found with a pointer dereference, followed by a 2 calculations (find the block, then calculate where the desired array is, then calculate the position of the element). In the second case there are two dereferences followed and two calculation (find the second array, calculate which pointer you want, dereference that, then calculate where the element is).
LVL 16

Expert Comment

ID: 7047494
P.S. note that the difference in the memory layout at the root of why they have to be malloced differently. In the first case there is a single block of memory, so a single malloc or calloc can fill the requirements.

But in the second case there are separate memory blocks for each array, plus one for the pointer array. Therefore you have to do all the mallocs or callocs separately.

Author Comment

ID: 7047511
Thank You

Featured Post

What does it mean to be "Always On"?

Is your cloud always on? With an Always On cloud you won't have to worry about downtime for maintenance or software application code updates, ensuring that your bottom line isn't affected.

Question has a verified solution.

If you are experiencing a similar issue, please ask a related question

Windows programmers of the C/C++ variety, how many of you realise that since Window 9x Microsoft has been lying to you about what constitutes Unicode ( They will have you believe that Unicode requires you to use…
This is a short and sweet, but (hopefully) to the point article. There seems to be some fundamental misunderstanding about the function prototype for the "main" function in C and C++, more specifically what type this function should return. I see so…
Video by: Grant
The goal of this video is to provide viewers with basic examples to understand and use nested-loops in the C programming language.
The goal of this video is to provide viewers with basic examples to understand and use conditional statements in the C programming language.

721 members asked questions and received personalized solutions in the past 7 days.

Join the community of 500,000 technology professionals and ask your questions.

Join & Ask a Question