Solved

Elliptic Arc Path

Posted on 2003-11-18
5
323 Views
Last Modified: 2008-03-10
Hi all,

I'm trying to code the "bouncing movement" of a ball for a program.

What I need is the formula from which I can get an exact point (position of the ball) in an elliptic arc. (I couldn't yet find it)

Could anybody please help?

Thanks in advanced,
Techfreelance
0
Comment
Question by:techfreelance
5 Comments
 
LVL 22

Accepted Solution

by:
grg99 earned 100 total points
ID: 9771211
If you're trying to simulate a ball falling and then bouncing off the floor, you can try this technique:

Give the ball a starting velocity in the X direction, say 1 m/sec

Give it a starting velocity in the Y direction, if we assume it's being thrown upward, say 0.5 m/sec

Now let's assume there's no air resistance, so the ball is not going to change speed in the X direction,
i.e. X Accelleration equals zero.

But there's gravity, which is a constant downward acceleration, so each second it's going to increase in Y velocity by G m/sec,
on Earth's surface G is IIRC 9.8 meters per second.

So that shoul dbe all you need to calculate the ball's trajectory.  Starting at X,Y position of say (0,0), calculate its position 0.1 second later, easily done since you know the X and Y velocities.  Also calculate a new X and Y velocity, given the X and Y accelerations.  Very simple math.


And Oh, when the ball hits the ground (Y = 0), it will bounce, assume a very elastic ball, so the Y velocity reflects.  Very easy, very simple, as the old Chef Tell used to say,

0
 
LVL 1

Assisted Solution

by:Big_B
Big_B earned 50 total points
ID: 9771284
Not a formula for an elliptical arc but perhaps you try something similar to this.
http://www.brainycreatures.co.uk/physics/friction.asp
0
 
LVL 31

Assisted Solution

by:GwynforWeb
GwynforWeb earned 100 total points
ID: 9771506
If a ball takes off at an angle theta and speed V then the path it takes is

                       x(t) = V*t*cos(theta)

                       y(t) = V*t*sin(theta) - g*t² /2

The time for the ball to come down is  (2V/g)sin(theta) so the above formula is for  0 < t < (2V/g)sin(theta).

I am not sure exactly how much detail you want but there is a start, let me know what else you need.
0
 
LVL 1

Expert Comment

by:Urhixidur
ID: 9838127
To the previous comments I'll simply add that what you're looking at is *not* an elliptical arc, but a parabolic arc.
0

Featured Post

What Is Threat Intelligence?

Threat intelligence is often discussed, but rarely understood. Starting with a precise definition, along with clear business goals, is essential.

Join & Write a Comment

Suggested Solutions

Introduction On a scale of 1 to 10, how would you rate our Product? Many of us have answered that question time and time again. But only a few of us have had the pleasure of receiving a stack of the filled out surveys and being asked to do somethi…
How to Win a Jar of Candy Corn: A Scientific Approach! I love mathematics. If you love mathematics also, you may enjoy this tip on how to use math to win your own jar of candy corn and to impress your friends. As I said, I love math, but I gu…
In this seventh video of the Xpdf series, we discuss and demonstrate the PDFfonts utility, which lists all the fonts used in a PDF file. It does this via a command line interface, making it suitable for use in programs, scripts, batch files — any pl…
This video shows how to remove a single email address from the Outlook 2010 Auto Suggestion memory. NOTE: For Outlook 2016 and 2013 perform the exact same steps. Open a new email: Click the New email button in Outlook. Start typing the address: …

705 members asked questions and received personalized solutions in the past 7 days.

Join the community of 500,000 technology professionals and ask your questions.

Join & Ask a Question

Need Help in Real-Time?

Connect with top rated Experts

19 Experts available now in Live!

Get 1:1 Help Now