I have 20 alphas, 20 betas and 10 gammas in alphabetical order. How many ways (in terms of outcomes not possibilities) can I then compile a second list of  alphas, betas & gammas so that 50% of the second list match the orginal list order?

ie, an abbreviated example showing an acceptable outcome

alpha     beta
..
alpha     alpha
beta       beta
..
beta       gamma
gamma   alpha
..
gamma   gamma

see http://oldlook.experts-exchange.com/Applications/MS_Office/Excel/Q_20815663.html for the background to my query

Cheers

Dave
LVL 50
###### Who is Participating?

x
I wear a lot of hats...

"The solutions and answers provided on Experts Exchange have been extremely helpful to me over the last few years. I wear a lot of hats - Developer, Database Administrator, Help Desk, etc., so I know a lot of things but not a lot about one thing. Experts Exchange gives me answers from people who do know a lot about one thing, in a easy to use platform." -Todd S.

Commented:
Have you been abled to form a 50% matching? I just quickly did a counting argument on a scrap of paper that showed it is not possible.
0
Author Commented:
LOL - I didnt actually check :)

Can you please check out my link to the Excel question, I tried to simplify the criteria here to make it easier without actually checking if it worked

How about we make it 20 alphas,20 betas & 20 gammas. Presumably that should form a valid 50% matching l okay

Cheers
Dave
0
Commented:
Yes it is possible with 20,20 and 20 with the obvious 10 of each matching/not matching. This is an interesting problem that in the general case looks very complex but I think there may be a clever solution (possibly not though). I will look tomorrow as it way way past bed time here. GfW
0
Commented:
I count
20!*20!*10!/(13!*7!*0! * 0!*11!*9!  *  7!*2!*1!)
+
20!*20!*10!/(11!*9!*0! * 2!*11!*7! * 7!*0!*3!)
+
20!*20!*10!/(10!*10!*0!  *  5!*10!*5!  *  5!*0!*5!)
+
20!*20!*10!/(9!*11!*0!  *  8!*9!*3!  *  3!*0!*7!)
+
20!*20!*10!/(8!*12!*0!  *  11!*8!*1!  *  1!*0!*9!)
0
Author Commented:
Hi GwynforWeb,

Yes, this is more complex that it first seems as normally a combination calc pulls out "different" specimens, ie horse placing etc. This one is a bit trickier.

Hi ozo

Can you please provide a detailed explanation for this

Cheers

Dave

0
Commented:
And for the 20 20 20 case I count
20!20!20! /
(20!*0!*0!*
0!*5!*15!*
0!*15!*5!)
+ 20!20!20! /
(18!*2!*0!*
0!*6!*14!*
2!*12!*6!)
+ 20!20!20! /
(16!*4!*0!*
0!*7!*13!*
4!*9!*7!)
+ 20!20!20! /
(14!*6!*0!*
0!*8!*12!*
6!*6!*8!)
+ 20!20!20! /
(12!*8!*0!*
0!*9!*11!*
8!*3!*9!)
+ 20!20!20! /
(10!*10!*0!*
0!*10!*10!*
10!*0!*10!)
+ 20!20!20! /
(9!*11!*0!*
3!*9!*8!*
8!*0!*12!)
+ 20!20!20! /
(8!*12!*0!*
6!*8!*6!*
6!*0!*14!)
+ 20!20!20! /
(7!*13!*0!*
9!*7!*4!*
4!*0!*16!)
+ 20!20!20! /
(6!*14!*0!*
12!*6!*2!*
2!*0!*18!)
+ 20!20!20! /
(5!*15!*0!*
15!*5!*0!*
0!*0!*20!)
0
Commented:
Wait a minute, that can't be right
0
Commented:
This should be correct now:
20!20!10! /
(8! 2! 10!
3! 17! 0!
9! 1! 0!)
+ 20!20!10! /
(8! 3! 9!
2! 17! 1!
10! 0! 0!)
+ 20!20!10! /
(8! 3! 9!
4! 16! 0!
8! 1! 1!)
+ 20!20!10! /
(8! 4! 8!
3! 16! 1!
9! 0! 1!)
+ 20!20!10! /
(8! 4! 8!
5! 15! 0!
7! 1! 2!)
+ 20!20!10! /
(8! 5! 7!
4! 15! 1!
8! 0! 2!)
+ 20!20!10! /
(8! 5! 7!
6! 14! 0!
6! 1! 3!)
+ 20!20!10! /
(8! 6! 6!
5! 14! 1!
7! 0! 3!)
+ 20!20!10! /
(8! 6! 6!
7! 13! 0!
5! 1! 4!)
+ 20!20!10! /
(8! 7! 5!
6! 13! 1!
6! 0! 4!)
+ 20!20!10! /
(8! 7! 5!
8! 12! 0!
4! 1! 5!)
+ 20!20!10! /
(8! 8! 4!
7! 12! 1!
5! 0! 5!)
+ 20!20!10! /
(8! 8! 4!
9! 11! 0!
3! 1! 6!)
+ 20!20!10! /
(8! 9! 3!
8! 11! 1!
4! 0! 6!)
+ 20!20!10! /
(8! 9! 3!
10! 10! 0!
2! 1! 7!)
+ 20!20!10! /
(8! 10! 2!
9! 10! 1!
3! 0! 7!)
+ 20!20!10! /
(8! 10! 2!
11! 9! 0!
1! 1! 8!)
+ 20!20!10! /
(8! 11! 1!
10! 9! 1!
2! 0! 8!)
+ 20!20!10! /
(8! 11! 1!
12! 8! 0!
0! 1! 9!)
+ 20!20!10! /
(8! 12! 0!
11! 8! 1!
1! 0! 9!)
+ 20!20!10! /
(9! 1! 10!
4! 16! 0!
7! 3! 0!)
+ 20!20!10! /
(9! 2! 9!
3! 16! 1!
8! 2! 0!)
+ 20!20!10! /
(9! 2! 9!
5! 15! 0!
6! 3! 1!)
+ 20!20!10! /
(9! 3! 8!
2! 16! 2!
9! 1! 0!)
+ 20!20!10! /
(9! 3! 8!
4! 15! 1!
7! 2! 1!)
+ 20!20!10! /
(9! 3! 8!
6! 14! 0!
5! 3! 2!)
+ 20!20!10! /
(9! 4! 7!
1! 16! 3!
10! 0! 0!)
+ 20!20!10! /
(9! 4! 7!
3! 15! 2!
8! 1! 1!)
+ 20!20!10! /
(9! 4! 7!
5! 14! 1!
6! 2! 2!)
+ 20!20!10! /
(9! 4! 7!
7! 13! 0!
4! 3! 3!)
+ 20!20!10! /
(9! 5! 6!
2! 15! 3!
9! 0! 1!)
+ 20!20!10! /
(9! 5! 6!
4! 14! 2!
7! 1! 2!)
+ 20!20!10! /
(9! 5! 6!
6! 13! 1!
5! 2! 3!)
+ 20!20!10! /
(9! 5! 6!
8! 12! 0!
3! 3! 4!)
+ 20!20!10! /
(9! 6! 5!
3! 14! 3!
8! 0! 2!)
+ 20!20!10! /
(9! 6! 5!
5! 13! 2!
6! 1! 3!)
+ 20!20!10! /
(9! 6! 5!
7! 12! 1!
4! 2! 4!)
+ 20!20!10! /
(9! 6! 5!
9! 11! 0!
2! 3! 5!)
+ 20!20!10! /
(9! 7! 4!
4! 13! 3!
7! 0! 3!)
+ 20!20!10! /
(9! 7! 4!
6! 12! 2!
5! 1! 4!)
+ 20!20!10! /
(9! 7! 4!
8! 11! 1!
3! 2! 5!)
+ 20!20!10! /
(9! 7! 4!
10! 10! 0!
1! 3! 6!)
+ 20!20!10! /
(9! 8! 3!
5! 12! 3!
6! 0! 4!)
+ 20!20!10! /
(9! 8! 3!
7! 11! 2!
4! 1! 5!)
+ 20!20!10! /
(9! 8! 3!
9! 10! 1!
2! 2! 6!)
+ 20!20!10! /
(9! 8! 3!
11! 9! 0!
0! 3! 7!)
+ 20!20!10! /
(9! 9! 2!
6! 11! 3!
5! 0! 5!)
+ 20!20!10! /
(9! 9! 2!
8! 10! 2!
3! 1! 6!)
+ 20!20!10! /
(9! 9! 2!
10! 9! 1!
1! 2! 7!)
+ 20!20!10! /
(9! 10! 1!
7! 10! 3!
4! 0! 6!)
+ 20!20!10! /
(9! 10! 1!
9! 9! 2!
2! 1! 7!)
+ 20!20!10! /
(9! 10! 1!
11! 8! 1!
0! 2! 8!)
+ 20!20!10! /
(9! 11! 0!
8! 9! 3!
3! 0! 7!)
+ 20!20!10! /
(9! 11! 0!
10! 8! 2!
1! 1! 8!)
+ 20!20!10! /
(10! 0! 10!
5! 15! 0!
5! 5! 0!)
+ 20!20!10! /
(10! 1! 9!
4! 15! 1!
6! 4! 0!)
+ 20!20!10! /
(10! 1! 9!
6! 14! 0!
4! 5! 1!)
+ 20!20!10! /
(10! 2! 8!
3! 15! 2!
7! 3! 0!)
+ 20!20!10! /
(10! 2! 8!
5! 14! 1!
5! 4! 1!)
+ 20!20!10! /
(10! 2! 8!
7! 13! 0!
3! 5! 2!)
+ 20!20!10! /
(10! 3! 7!
2! 15! 3!
8! 2! 0!)
+ 20!20!10! /
(10! 3! 7!
4! 14! 2!
6! 3! 1!)
+ 20!20!10! /
(10! 3! 7!
6! 13! 1!
4! 4! 2!)
+ 20!20!10! /
(10! 3! 7!
8! 12! 0!
2! 5! 3!)
+ 20!20!10! /
(10! 4! 6!
1! 15! 4!
9! 1! 0!)
+ 20!20!10! /
(10! 4! 6!
3! 14! 3!
7! 2! 1!)
+ 20!20!10! /
(10! 4! 6!
5! 13! 2!
5! 3! 2!)
+ 20!20!10! /
(10! 4! 6!
7! 12! 1!
3! 4! 3!)
+ 20!20!10! /
(10! 4! 6!
9! 11! 0!
1! 5! 4!)
+ 20!20!10! /
(10! 5! 5!
0! 15! 5!
10! 0! 0!)
+ 20!20!10! /
(10! 5! 5!
2! 14! 4!
8! 1! 1!)
+ 20!20!10! /
(10! 5! 5!
4! 13! 3!
6! 2! 2!)
+ 20!20!10! /
(10! 5! 5!
6! 12! 2!
4! 3! 3!)
+ 20!20!10! /
(10! 5! 5!
8! 11! 1!
2! 4! 4!)
+ 20!20!10! /
(10! 5! 5!
10! 10! 0!
0! 5! 5!)
+ 20!20!10! /
(10! 6! 4!
1! 14! 5!
9! 0! 1!)
+ 20!20!10! /
(10! 6! 4!
3! 13! 4!
7! 1! 2!)
+ 20!20!10! /
(10! 6! 4!
5! 12! 3!
5! 2! 3!)
+ 20!20!10! /
(10! 6! 4!
7! 11! 2!
3! 3! 4!)
+ 20!20!10! /
(10! 6! 4!
9! 10! 1!
1! 4! 5!)
+ 20!20!10! /
(10! 7! 3!
2! 13! 5!
8! 0! 2!)
+ 20!20!10! /
(10! 7! 3!
4! 12! 4!
6! 1! 3!)
+ 20!20!10! /
(10! 7! 3!
6! 11! 3!
4! 2! 4!)
+ 20!20!10! /
(10! 7! 3!
8! 10! 2!
2! 3! 5!)
+ 20!20!10! /
(10! 7! 3!
10! 9! 1!
0! 4! 6!)
+ 20!20!10! /
(10! 8! 2!
3! 12! 5!
7! 0! 3!)
+ 20!20!10! /
(10! 8! 2!
5! 11! 4!
5! 1! 4!)
+ 20!20!10! /
(10! 8! 2!
7! 10! 3!
3! 2! 5!)
+ 20!20!10! /
(10! 8! 2!
9! 9! 2!
1! 3! 6!)
+ 20!20!10! /
(10! 9! 1!
4! 11! 5!
6! 0! 4!)
+ 20!20!10! /
(10! 9! 1!
6! 10! 4!
4! 1! 5!)
+ 20!20!10! /
(10! 9! 1!
8! 9! 3!
2! 2! 6!)
+ 20!20!10! /
(10! 9! 1!
10! 8! 2!
0! 3! 7!)
+ 20!20!10! /
(10! 10! 0!
5! 10! 5!
5! 0! 5!)
+ 20!20!10! /
(10! 10! 0!
7! 9! 4!
3! 1! 6!)
+ 20!20!10! /
(10! 10! 0!
9! 8! 3!
1! 2! 7!)
+ 20!20!10! /
(11! 0! 9!
5! 14! 1!
4! 6! 0!)
+ 20!20!10! /
(11! 0! 9!
7! 13! 0!
2! 7! 1!)
+ 20!20!10! /
(11! 1! 8!
4! 14! 2!
5! 5! 0!)
+ 20!20!10! /
(11! 1! 8!
6! 13! 1!
3! 6! 1!)
+ 20!20!10! /
(11! 1! 8!
8! 12! 0!
1! 7! 2!)
+ 20!20!10! /
(11! 2! 7!
3! 14! 3!
6! 4! 0!)
+ 20!20!10! /
(11! 2! 7!
5! 13! 2!
4! 5! 1!)
+ 20!20!10! /
(11! 2! 7!
7! 12! 1!
2! 6! 2!)
+ 20!20!10! /
(11! 2! 7!
9! 11! 0!
0! 7! 3!)
+ 20!20!10! /
(11! 3! 6!
2! 14! 4!
7! 3! 0!)
+ 20!20!10! /
(11! 3! 6!
4! 13! 3!
5! 4! 1!)
+ 20!20!10! /
(11! 3! 6!
6! 12! 2!
3! 5! 2!)
+ 20!20!10! /
(11! 3! 6!
8! 11! 1!
1! 6! 3!)
+ 20!20!10! /
(11! 4! 5!
1! 14! 5!
8! 2! 0!)
+ 20!20!10! /
(11! 4! 5!
3! 13! 4!
6! 3! 1!)
+ 20!20!10! /
(11! 4! 5!
5! 12! 3!
4! 4! 2!)
+ 20!20!10! /
(11! 4! 5!
7! 11! 2!
2! 5! 3!)
+ 20!20!10! /
(11! 4! 5!
9! 10! 1!
0! 6! 4!)
+ 20!20!10! /
(11! 5! 4!
0! 14! 6!
9! 1! 0!)
+ 20!20!10! /
(11! 5! 4!
2! 13! 5!
7! 2! 1!)
+ 20!20!10! /
(11! 5! 4!
4! 12! 4!
5! 3! 2!)
+ 20!20!10! /
(11! 5! 4!
6! 11! 3!
3! 4! 3!)
+ 20!20!10! /
(11! 5! 4!
8! 10! 2!
1! 5! 4!)
+ 20!20!10! /
(11! 6! 3!
1! 13! 6!
8! 1! 1!)
+ 20!20!10! /
(11! 6! 3!
3! 12! 5!
6! 2! 2!)
+ 20!20!10! /
(11! 6! 3!
5! 11! 4!
4! 3! 3!)
+ 20!20!10! /
(11! 6! 3!
7! 10! 3!
2! 4! 4!)
+ 20!20!10! /
(11! 6! 3!
9! 9! 2!
0! 5! 5!)
+ 20!20!10! /
(11! 7! 2!
0! 13! 7!
9! 0! 1!)
+ 20!20!10! /
(11! 7! 2!
2! 12! 6!
7! 1! 2!)
+ 20!20!10! /
(11! 7! 2!
4! 11! 5!
5! 2! 3!)
+ 20!20!10! /
(11! 7! 2!
6! 10! 4!
3! 3! 4!)
+ 20!20!10! /
(11! 7! 2!
8! 9! 3!
1! 4! 5!)
+ 20!20!10! /
(11! 8! 1!
1! 12! 7!
8! 0! 2!)
+ 20!20!10! /
(11! 8! 1!
3! 11! 6!
6! 1! 3!)
+ 20!20!10! /
(11! 8! 1!
5! 10! 5!
4! 2! 4!)
+ 20!20!10! /
(11! 8! 1!
7! 9! 4!
2! 3! 5!)
+ 20!20!10! /
(11! 8! 1!
9! 8! 3!
0! 4! 6!)
+ 20!20!10! /
(11! 9! 0!
2! 11! 7!
7! 0! 3!)
+ 20!20!10! /
(11! 9! 0!
4! 10! 6!
5! 1! 4!)
+ 20!20!10! /
(11! 9! 0!
6! 9! 5!
3! 2! 5!)
+ 20!20!10! /
(11! 9! 0!
8! 8! 4!
1! 3! 6!)
+ 20!20!10! /
(12! 0! 8!
5! 13! 2!
3! 7! 0!)
+ 20!20!10! /
(12! 0! 8!
7! 12! 1!
1! 8! 1!)
+ 20!20!10! /
(12! 1! 7!
4! 13! 3!
4! 6! 0!)
+ 20!20!10! /
(12! 1! 7!
6! 12! 2!
2! 7! 1!)
+ 20!20!10! /
(12! 1! 7!
8! 11! 1!
0! 8! 2!)
+ 20!20!10! /
(12! 2! 6!
3! 13! 4!
5! 5! 0!)
+ 20!20!10! /
(12! 2! 6!
5! 12! 3!
3! 6! 1!)
+ 20!20!10! /
(12! 2! 6!
7! 11! 2!
1! 7! 2!)
+ 20!20!10! /
(12! 3! 5!
2! 13! 5!
6! 4! 0!)
+ 20!20!10! /
(12! 3! 5!
4! 12! 4!
4! 5! 1!)
+ 20!20!10! /
(12! 3! 5!
6! 11! 3!
2! 6! 2!)
+ 20!20!10! /
(12! 3! 5!
8! 10! 2!
0! 7! 3!)
+ 20!20!10! /
(12! 4! 4!
1! 13! 6!
7! 3! 0!)
+ 20!20!10! /
(12! 4! 4!
3! 12! 5!
5! 4! 1!)
+ 20!20!10! /
(12! 4! 4!
5! 11! 4!
3! 5! 2!)
+ 20!20!10! /
(12! 4! 4!
7! 10! 3!
1! 6! 3!)
+ 20!20!10! /
(12! 5! 3!
0! 13! 7!
8! 2! 0!)
+ 20!20!10! /
(12! 5! 3!
2! 12! 6!
6! 3! 1!)
+ 20!20!10! /
(12! 5! 3!
4! 11! 5!
4! 4! 2!)
+ 20!20!10! /
(12! 5! 3!
6! 10! 4!
2! 5! 3!)
+ 20!20!10! /
(12! 5! 3!
8! 9! 3!
0! 6! 4!)
+ 20!20!10! /
(12! 6! 2!
1! 12! 7!
7! 2! 1!)
+ 20!20!10! /
(12! 6! 2!
3! 11! 6!
5! 3! 2!)
+ 20!20!10! /
(12! 6! 2!
5! 10! 5!
3! 4! 3!)
+ 20!20!10! /
(12! 6! 2!
7! 9! 4!
1! 5! 4!)
+ 20!20!10! /
(12! 7! 1!
0! 12! 8!
8! 1! 1!)
+ 20!20!10! /
(12! 7! 1!
2! 11! 7!
6! 2! 2!)
+ 20!20!10! /
(12! 7! 1!
4! 10! 6!
4! 3! 3!)
+ 20!20!10! /
(12! 7! 1!
6! 9! 5!
2! 4! 4!)
+ 20!20!10! /
(12! 7! 1!
8! 8! 4!
0! 5! 5!)
+ 20!20!10! /
(12! 8! 0!
1! 11! 8!
7! 1! 2!)
+ 20!20!10! /
(12! 8! 0!
3! 10! 7!
5! 2! 3!)
+ 20!20!10! /
(12! 8! 0!
5! 9! 6!
3! 3! 4!)
+ 20!20!10! /
(12! 8! 0!
7! 8! 5!
1! 4! 5!)
+ 20!20!10! /
(13! 0! 7!
5! 12! 3!
2! 8! 0!)
+ 20!20!10! /
(13! 0! 7!
7! 11! 2!
0! 9! 1!)
+ 20!20!10! /
(13! 1! 6!
4! 12! 4!
3! 7! 0!)
+ 20!20!10! /
(13! 1! 6!
6! 11! 3!
1! 8! 1!)
+ 20!20!10! /
(13! 2! 5!
3! 12! 5!
4! 6! 0!)
+ 20!20!10! /
(13! 2! 5!
5! 11! 4!
2! 7! 1!)
+ 20!20!10! /
(13! 2! 5!
7! 10! 3!
0! 8! 2!)
+ 20!20!10! /
(13! 3! 4!
2! 12! 6!
5! 5! 0!)
+ 20!20!10! /
(13! 3! 4!
4! 11! 5!
3! 6! 1!)
+ 20!20!10! /
(13! 3! 4!
6! 10! 4!
1! 7! 2!)
+ 20!20!10! /
(13! 4! 3!
1! 12! 7!
6! 4! 0!)
+ 20!20!10! /
(13! 4! 3!
3! 11! 6!
4! 5! 1!)
+ 20!20!10! /
(13! 4! 3!
5! 10! 5!
2! 6! 2!)
+ 20!20!10! /
(13! 4! 3!
7! 9! 4!
0! 7! 3!)
+ 20!20!10! /
(13! 5! 2!
0! 12! 8!
7! 3! 0!)
+ 20!20!10! /
(13! 5! 2!
2! 11! 7!
5! 4! 1!)
+ 20!20!10! /
(13! 5! 2!
4! 10! 6!
3! 5! 2!)
+ 20!20!10! /
(13! 5! 2!
6! 9! 5!
1! 6! 3!)
+ 20!20!10! /
(13! 6! 1!
1! 11! 8!
6! 3! 1!)
+ 20!20!10! /
(13! 6! 1!
3! 10! 7!
4! 4! 2!)
+ 20!20!10! /
(13! 6! 1!
5! 9! 6!
2! 5! 3!)
+ 20!20!10! /
(13! 6! 1!
7! 8! 5!
0! 6! 4!)
+ 20!20!10! /
(13! 7! 0!
0! 11! 9!
7! 2! 1!)
+ 20!20!10! /
(13! 7! 0!
2! 10! 8!
5! 3! 2!)
+ 20!20!10! /
(13! 7! 0!
4! 9! 7!
3! 4! 3!)
+ 20!20!10! /
(13! 7! 0!
6! 8! 6!
1! 5! 4!)
+ 20!20!10! /
(14! 0! 6!
5! 11! 4!
1! 9! 0!)
+ 20!20!10! /
(14! 1! 5!
4! 11! 5!
2! 8! 0!)
+ 20!20!10! /
(14! 1! 5!
6! 10! 4!
0! 9! 1!)
+ 20!20!10! /
(14! 2! 4!
3! 11! 6!
3! 7! 0!)
+ 20!20!10! /
(14! 2! 4!
5! 10! 5!
1! 8! 1!)
+ 20!20!10! /
(14! 3! 3!
2! 11! 7!
4! 6! 0!)
+ 20!20!10! /
(14! 3! 3!
4! 10! 6!
2! 7! 1!)
+ 20!20!10! /
(14! 3! 3!
6! 9! 5!
0! 8! 2!)
+ 20!20!10! /
(14! 4! 2!
1! 11! 8!
5! 5! 0!)
+ 20!20!10! /
(14! 4! 2!
3! 10! 7!
3! 6! 1!)
+ 20!20!10! /
(14! 4! 2!
5! 9! 6!
1! 7! 2!)
+ 20!20!10! /
(14! 5! 1!
0! 11! 9!
6! 4! 0!)
+ 20!20!10! /
(14! 5! 1!
2! 10! 8!
4! 5! 1!)
+ 20!20!10! /
(14! 5! 1!
4! 9! 7!
2! 6! 2!)
+ 20!20!10! /
(14! 5! 1!
6! 8! 6!
0! 7! 3!)
+ 20!20!10! /
(14! 6! 0!
1! 10! 9!
5! 4! 1!)
+ 20!20!10! /
(14! 6! 0!
3! 9! 8!
3! 5! 2!)
+ 20!20!10! /
(14! 6! 0!
5! 8! 7!
1! 6! 3!)
+ 20!20!10! /
(15! 0! 5!
5! 10! 5!
0! 10! 0!)
+ 20!20!10! /
(15! 1! 4!
4! 10! 6!
1! 9! 0!)
+ 20!20!10! /
(15! 2! 3!
3! 10! 7!
2! 8! 0!)
+ 20!20!10! /
(15! 2! 3!
5! 9! 6!
0! 9! 1!)
+ 20!20!10! /
(15! 3! 2!
2! 10! 8!
3! 7! 0!)
+ 20!20!10! /
(15! 3! 2!
4! 9! 7!
1! 8! 1!)
+ 20!20!10! /
(15! 4! 1!
1! 10! 9!
4! 6! 0!)
+ 20!20!10! /
(15! 4! 1!
3! 9! 8!
2! 7! 1!)
+ 20!20!10! /
(15! 4! 1!
5! 8! 7!
0! 8! 2!)
+ 20!20!10! /
(15! 5! 0!
0! 10! 10!
5! 5! 0!)
+ 20!20!10! /
(15! 5! 0!
2! 9! 9!
3! 6! 1!)
+ 20!20!10! /
(15! 5! 0!
4! 8! 8!
1! 7! 2!)
+ 20!20!10! /
(16! 1! 3!
4! 9! 7!
0! 10! 0!)
+ 20!20!10! /
(16! 2! 2!
3! 9! 8!
1! 9! 0!)
+ 20!20!10! /
(16! 3! 1!
2! 9! 9!
2! 8! 0!)
+ 20!20!10! /
(16! 3! 1!
4! 8! 8!
0! 9! 1!)
+ 20!20!10! /
(16! 4! 0!
1! 9! 10!
3! 7! 0!)
+ 20!20!10! /
(16! 4! 0!
3! 8! 9!
1! 8! 1!)
+ 20!20!10! /
(17! 2! 1!
3! 8! 9!
0! 10! 0!)
+ 20!20!10! /
(17! 3! 0!
2! 8! 10!
1! 9! 0!)

I don't see a simple method of enumerating these other than brute force
0
Commented:
The formula I get for the 20 20 20 case is  a bit long to post, but the final number I get is 6129796750811232007318948
The total count for the 20 20 10 case was 215331640837573989718704
I could post the script I used to enumerate these if GwynforWeb doesn't come up with a more clever solution.
0
Commented:
Hi  brettdj,
I have read both your question and the link, I'm still not quite clear on the question.

When you say 50% of the second list matches the first list. Do you mean that at exactly 1/2 of the positions the two lists should match? i.e. the follow would be acceptable.
1    2
A   A
B   A
G   G
A   B

Does the second list should use exactly the same number of alpha, beta and gamma as the first one?
0
Commented:
Dose the formula n = 50, k = 25
n!
--------- 2^k
k! (n-k)!

work?
0
Author Commented:
Hi ozo,

My eyes are spinning  :)

Hi skp23,

Yes that would be a match

The problem with this question is that some ouctomes are duplicates, so I'd like to know how many discrete outcomes are possible rather than how many possibilities are possible. Order is important but some permutations are identical, ie

1    2     3      4      5
A    G1    G2   G1    G2
G    G2    G1   G2    G1
A    A1    A1   A2    A2
G    A2    A2   A1    A1

For example, I've shown four of the possible permuations of rearranging two gammas and two alphas so that 50% of the results correspond to group 1. But all four permuataions are an identcial outcome.

Whereas

G
A
A
G

would be another discrete outcome that satisfies the constraints

Make sense?

Cheers
Dave
0
Commented:
The factorial coefficients in the denominator represent all the ways to fill a 3×3 matrix with nonnegative integers such that the sum of the first row and column is 20, the sum of the second row and column is 20, the sum of the third row and column is 10, and the sum of the diagonal is 25
0

Experts Exchange Solution brought to you by

Facing a tech roadblock? Get the help and guidance you need from experienced professionals who care. Ask your question anytime, anywhere, with no hassle.

Author Commented:
Can you please repeat this method on a smaller sample which I can actually test to check that it matches what I want

How about on 4 alphas, 4 betas and 2 gammas with the same 50% criteria

Sorry for stringing this out but I'm keen to understand it

Cheers

Dave
0
Commented:
4!4!2! /
(2! 0! 2!
1! 3! 0!
1! 1! 0!)
+ 4!4!2! /
(2! 1! 1!
0! 3! 1!
2! 0! 0!)
+ 4!4!2! /
(2! 1! 1!
2! 2! 0!
0! 1! 1!)
+ 4!4!2! /
(2! 2! 0!
1! 2! 1!
1! 0! 1!)
+ 4!4!2! /
(3! 0! 1!
1! 2! 1!
0! 2! 0!)
+ 4!4!2! /
(3! 1! 0!
0! 2! 2!
1! 1! 0!)
=2304
0
Commented:
Wait, that's wrong again
0
Commented:
4!4!2! /
(2! 0! 2!
1! 3! 0!
1! 1! 0!)
+ 4!4!2! /
(2! 1! 1!
0! 3! 1!
2! 0! 0!)
+ 4!4!2! /
(2! 1! 1!
2! 2! 0!
0! 1! 1!)
+ 4!4!2! /
(2! 2! 0!
1! 2! 1!
1! 0! 1!)
+ 4!4!2! /
(3! 0! 1!
1! 2! 1!
0! 2! 0!)
+ 4!4!2! /
(3! 1! 0!
0! 2! 2!
1! 1! 0!)
=480
0
Author Commented:
Ok, I'll go away and crunch it in an excel spreadsheet  :)

Can you give me any links to look at to explain this technique?

Cheers

Dave

0
Author Commented:
Bugger it - that still a long one to test as I'm not sure I've generated all the discrete outcomes. So....

I can see the pattern in what you doing but would like a little more understang, a link to your mathematical techique will do fine and I'll then accept the answer. I don't want to string you out too long on this

If anyone else then  posts another method or finds an error then I'll open a new question

Thanks for your hard work on this

Cheers

Dave
0
Commented:
Let you have x alpha mismatches (and 20-x matches), y beta mismatches (and 20-y matches), and z gamma mismatches (and 10-z matches). For x,y,z there are two constraints:
1) Since you want 50% matches, x+y+z=(20+20+10)/2=25
2) "Triangle" ineqalities x<=y+z, y<=x+z, z<=x+y; otherwise you won't be able to produce mismatches.

Let we have t alpha-beta mismatches (i.e. t alphas are replaced with betas in the second list). Then we have x-t alpha-gamma mismatches, y-t gamma-beta mismatches, z-y+t gamma-alpha mismatches, x-z+y-t beta-alpha mismatches, and z+t-x beta-gamma mismatches.
Number of ways to arrange them on x alpha positions, y beta positions, and z gamma positions is
C(x,t)*C(y,z+t-x)*C(z,y-t),
where C(n,m) is ``n choose m'' aka binomial coefficient.

And finally we need to arrange mismatch positions in the second list - there are C(20,x)*C(20,y)*C(10,z) ways.

So, number of the second lists (mis)matching exactly 50% of the original list is
Sum(C(x,t)*C(y,z+t-x)*C(z,y-t)*C(20,x)*C(20,y)*C(10,z)), where sum is taken over all suitable x,y,z,t.

In mathematics, C(n,m) is defined in clever way: it's zero when n,m make no sense (e.g. m<0). Such definition allow simplify much the summation domain. In particular, the summation can be done in Maple as follows:

producing the result:  19507489009223604480
0
Commented:
And for 20 gammas, the result is

1825444985199239330887936

0
Commented:
Hmm, I got 19507489009223604480 and 1825444985199239090513920.  I must have missed a term for the 20 20 20 case.
The Maple notation is much nicer than my explicit list of terms
0
Author Commented:
Thanks guys

I was used enjoy engineering mathamatics especially when it was about probabality but this was way out of my experience....

I need to do a bit more digging with this but I'll close this now. Ozo I'll give you the points for the hard work but I'll also post points for relf in a new question, the explanation and the formula was much appreciated

Cheers

Dave
0
Commented:
To brettdj,
Hi Dave, did you get a result from relf's answer? Can you email me, I had some further thoughts but didn't want to cloud the issue, which may now be irrelevant if relf's anwswer works.
cheers
will49
0
Author Commented:
Hi will49

I marked it down for future reference but I confess that I haven't used the methods above yet

Once I got two explanations I thought I'd close the question rather than drag it out. You may wish to keep posting in this thread to answer your problem

Regards

Dave
0
###### It's more than this solution.Get answers and train to solve all your tech problems - anytime, anywhere.Try it for free Edge Out The Competitionfor your dream job with proven skills and certifications.Get started today Stand Outas the employee with proven skills.Start learning today for free Move Your Career Forwardwith certification training in the latest technologies.Start your trial today
Math / Science

From novice to tech pro — start learning today.