Want to protect your cyber security and still get fast solutions? Ask a secure question today.Go Premium

x
  • Status: Solved
  • Priority: Medium
  • Security: Public
  • Views: 440
  • Last Modified:

MAKING TRANSFORMATIONS USING BORLAND C++

can anyone help me, please
how can I make some transformations "like translation,
scaling, rotation, ...." using the Borland C++ 3.1
Graphics Package?

thanks
ARSSES.  
0
ARSSES
Asked:
ARSSES
  • 3
2 Solutions
 
ankuratvbCommented:
Hi,

This code performs all 2D tranformations and this works till four vertex figures.
Enter the co-ordinates in clockwise order.

//2D Transformations
#include<math.h>
#include<iostream.h>
#include <graphics.h>
#include <conio.h>
#include<dos.h>

float r2d=M_PI/180.0f;
float co[4][3];
float tr[3][3];
float res[4][3]={0};
int r=4,c=3,n;
void draw(int);
void disp();
void rotate(int,int,float);
void translate(int,int);
void scale(int,int);
void matmul();
int main()
{
      int gdriver = DETECT, gmode;
      int i,j;
      cout<<"Enter the no. of pts:";
      cin>>n;
      cout<<"Enter the Pairs of co-ordinates:\n";
      for(i=0;i<n;i++)
      {
       cin>>co[i][0]>>co[i][1];
       co[i][2]=1;
      }
      initgraph(&gdriver, &gmode, "\\tc\\bgi");
      cleardevice();
      draw(1);
      getch();
      //scale(4,4);
      //translate(100,100);
      //draw(15);
      //getch();
      //scale(2,2);

      rotate(0,0,45.0f);
      disp();
      draw(15);
      getch();
      closegraph();
      return 0;
}
void disp()
{
      int i,j;
      for(i=0;i<n;i++)
      {
       for(j=0;j<3;j++)
       {
        cout<<co[i][j]<<" ";
       }
       cout<<"\n";
      }
}
void draw(int col)
{
 int i,j;
 setcolor(col);
/*
 for(i=0;i<n;i++)
 {
  circle(co[i][0],co[i][1],5);
 }
*/
 for(i=0;i<n;i++)
 {
  if(i==n-1) j=0; else j=i+1;
  line(co[i][0],co[i][1],co[j][0],co[j][1]);
 }
}
void translate(int tx,int ty)
{
 int i;
 for(i=0;i<3;i++)
 {tr[i][i]=1;}
 tr[0][1]=0;tr[0][2]=0;
 tr[1][0]=0;tr[1][2]=0;
 tr[2][0]=tx;tr[2][1]=ty;
 matmul();
}

void scale(int sx,int sy)
{
 tr[0][0]=sx;tr[1][1]=sy;tr[2][2]=1;
 tr[0][1]=0;tr[0][2]=0;
 tr[1][0]=0;tr[1][2]=0;
 tr[2][0]=0;tr[2][1]=0;
 matmul();
}

void rotate(int x,int y,float th)
{
 //translate(-x,-y);
 float ang=th*r2d;
 tr[0][0]=cos(ang);tr[1][1]=cos(ang);tr[2][2]=1;
 tr[0][1]=sin(ang);tr[0][2]=0;
 tr[1][0]=-sin(ang);tr[1][2]=0;
 tr[2][0]=0;tr[2][1]=0;
 matmul();
 //translate(x,y);
}
void matmul()
{
 int i,j,k;
 for(i=0;i<r;i++)
  {
  for(j=0;j<c;j++)
  {
   for(k=0;k<c;k++)
   {
    res[i][j]=res[i][j]+(co[i][k]*tr[k][j]);
   }
  }
 }
for(i=0;i<n;i++)
{
 for(j=0;j<3;j++)
 {
  co[i][j]=res[i][j];
 }
}
}
0
 
Avik DasguptaCommented:
u must be following some standard graphics algorithms for these. Most of them generally represent the co-ordinates of an arbitrary figure as a matrix and apply different matrix transformations to achieve different configurations of the figures.U can also find some important stuff here
 http://alumni.imsa.edu/~stendahl/comp/links.html
Try them.

Avik.
0
 
ankuratvbCommented:
Hi,

All these transformations i.e. translation,scaling and rotation have standard matrices that
are used.
Just do a Google for :2D transformations "computer graphics"

U'll get plenty of links and there are a number of standard matrices that are used by dif.
authors.

Some represent the matrices as row matrices,some as column matrices.

In my program ,i have used the fol. matrix format
x' and y' are the co-ordinates after tranformations
x and y are the co-ordinates before tranformations.

Matrices of 3 columns(why the extra 1?u could have asked) have been used for 2D to make the co-ordinates homogeneous i.e. all the operations can be represented as matrix multiplications


[x' y' 1]=[x y 1][1 0 0
                         0 1 0
                        tx ty 1]

For translation where tx and ty are the translation displacements respectively.

[x' y' 1]=[x y 1][sx  0 0
                         0  sy 0
                         0   0  1]

For scaling where sx and sy are the scale ratios in x and y respectively.

[x' y' 1]=[x y 1][cos a  sin a  0
                         -sin a cos a  0
                           0        0      1]

For rotation where a is the angle in degrees and this is rotation anti-clockwise.
For clockwise,replace a by -a

So,if u have a number of points say 3 points,
store them in matrix as:
[x1 y1 1
 x2 y2 1
 x3 y3 1]
and multiply this matrix with the appropriate transformation matrix to get the new co-ordinates.


HTH
0
 
ARSSESAuthor Commented:
HI,

I WNTA TO SAY THANKS FOR ANKURATUB & AVIK77
 FOR HELPING ME "MANY THANKS".

ARSSES
0
 
ankuratvbCommented:
Glad to be of help.
0

Featured Post

What does it mean to be "Always On"?

Is your cloud always on? With an Always On cloud you won't have to worry about downtime for maintenance or software application code updates, ensuring that your bottom line isn't affected.

  • 3
Tackle projects and never again get stuck behind a technical roadblock.
Join Now