Want to protect your cyber security and still get fast solutions? Ask a secure question today.Go Premium

x
  • Status: Solved
  • Priority: Medium
  • Security: Public
  • Views: 1711
  • Last Modified:

multiplication and division for a 2x2 matrix

#include <iostream>

using namespace std;

class Matrix {
     
public:
     Matrix(int val = 0) : nValue(val) { Initialise(); }
     ~Matrix() {};
     Matrix add(const Matrix& rhs);
     Matrix sub(const Matrix& rhs);
     Matrix mul(const Matrix& rhs);
     Matrix div(const Matrix& rhs);
     void print();
     void Initialise();
     void Clear();                        
private:
     int M[2][2];
     int nCols;
     int nRows;
     int size;
     int nValue;
};


void Matrix::Initialise()
{
     for (int r = 0; r < 2; r++) {
          for (int c = 0; c < 2; c++) {
               M[r][c] = nValue;
          }
     }
}

void Matrix::Clear()
{
     for (int r = 0; r < 2; r++) {
          for (int c = 0; c < 2; c++) {
               M[r][c] = 0;
          }
     }
}

Matrix Matrix::add(const Matrix& rhs)
{
     Matrix temp;

     for (int r = 0; r < 2; r++) {
          for (int c = 0; c < 2; c++) {
               temp.M[r][c] = rhs.M[r][c] + M[r][c];
          }
     }
     return temp;
}

Matrix Matrix::sub(const Matrix& rhs)
{
     Matrix temp;

     for (int r = 0; r < 2; r++) {
          for (int c = 0; c < 2; c++) {
               temp.M[r][c] = rhs.M[r][c] - M[r][c];
          }
     }
     return temp;
}

Matrix Matrix::mul(const Matrix& rhs)
{
     Matrix temp;

     for (int r = 0; r < 2; r++) {
          for (int c = 0; c < 2; c++) {
               temp.M[r][c] = rhs.M[r][c] * M[r][c];
          }
     }
     return temp;
}

Matrix Matrix::div(const Matrix& rhs)
{
     Matrix temp;

     for (int r = 0; r < 2; r++) {
          for (int c = 0; c < 2; c++) {
               temp.M[r][c] = rhs.M[r][c] / M[r][c];
          }
     }
     return temp;
}

void Matrix::print()
{
     for (int r = 0; r < 2; r++) {
          for (int c = 0; c < 2; c++) {
               cout << M[r][c] << "\t";
          }
          cout << endl;
     }
}


int main()
{
     Matrix a(2);
     Matrix b(3);
     Matrix c = a.add(b);
     c.print();

     Matrix d(2);
     Matrix e(3);
     Matrix f = a.sub(b);
     f.print();

     Matrix g(2);
     Matrix h(3);
     Matrix i = a.mul(b);
     i.print();

     Matrix j(2);
     Matrix k(3);
     Matrix l = a.div(b);
     l.print();
     
     return 0;

}

output:

5       5
5       5
1       1
1       1
6       6
6       6

How would you write the implementation for multiplication and division?  I have looked at some examples but cannot grasp the concept.  Please advise.
0
edelossantos
Asked:
edelossantos
  • 3
3 Solutions
 
PerryDKCommented:
Have a look at http://www.maths-help.co.uk/Knowldge/Alg/Matrices/Question.htm

Secondly I'm not real clear on your Martrix design.  Is this intended to be a class that can only handle 2x2 matricies?  Or is your Matrix class supposed to handle any r by c matrix?
0
 
PerryDKCommented:
Here is matrix multiplication for 2x2 matrix given the definition at http://www.maths-help.co.uk/Knowldge/Alg/Matrices/Question.htm

Matrix Matrix::mul(const Matrix& rhs)
{
  Matrix temp;

  for (int r = 0; r < 2; r++)
  {
    for (int c = 0; c < 2; c++)
    {
      temp.M[r][c] = 0;

      for(int x = 0; x < 2; x++
      {
        temp.M[r][c] += rhs.M[c][x] * M[x][c];
      }
    }
  }
  return temp;
}

For you Matrix division I'm not exactly sure what matrix division is unless you mean multiplying by the inverse of a matrix?
0
 
PerryDKCommented:
temp.M[r][c] += rhs.M[c][x] * M[x][c];

Change this to

temp.M[r][c] += rhs.M[x][c] * M[c][x];
0

Featured Post

Technology Partners: We Want Your Opinion!

We value your feedback.

Take our survey and automatically be enter to win anyone of the following:
Yeti Cooler, Amazon eGift Card, and Movie eGift Card!

  • 3
Tackle projects and never again get stuck behind a technical roadblock.
Join Now