Irreducible polynomials

Posted on 2004-08-25
Last Modified: 2008-02-01
May I ask what are Irreducible polynomials?
Examples with workings will be good.

Question by:hongjun
Welcome to Experts Exchange

Add your voice to the tech community where 5M+ people just like you are talking about what matters.

  • Help others & share knowledge
  • Earn cash & points
  • Learn & ask questions
LVL 33

Assisted Solution

snoyes_jw earned 100 total points
ID: 11894451
Those polynomials that cannot be expressed as a product of non-trivial factors.  For example, x²-2 is irreducible over the set of rational numbers, because there are no rational numbers A and B such that x²-2 = (x+A)(x+B).

Straight from Google:
LVL 84

Assisted Solution

ozo earned 150 total points
ID: 11894506
A polynomial f(x) is irreducible over <R> if f(x) cannot be factoored as a product of polynomials in <R>[x] of degree less than the degree of f(x)
for example, the polynomial x²+1 is
irreducible in the Reals, because x²+1 has no Real root
reducible in the Complex field because x²+1 = (x-i)(x+i)
reducible in Z2 because x²+1 = (x+1)²
reducuble in Z5 because x²+1 = (x + 3)(x+2)

Accepted Solution

n_fortynine earned 250 total points
ID: 11918917
There is also a theorem that states that an irreducible polynimal p(x) in F[x] (where F is a field) will be reducible, i.e. have a root, in the extension field F[x]/p(x) (i.e. the field that contains all the remainders of a division of any polynomial in F[x] by p(x)). This theorem might not hold if F isn't a field.

A quick trick to recognize irreducibles of 2nd and 3rd degrees in F[x] is when they have no roots in F (F denotes a field).

For example: x^4 + x + 1 is irreducible in Z2[x], but has the root [x] in Z2[x]/(x^4 + x + 1) because [x]^4 + [x] + 1 = [x^4 + x + 1] = [0]

x^2 + x + 1 is also irreducible in Z2[x] but has the root [x^2 + x] in Z2[x]/(x^4 + x + 1) because [x^2 + x]^2 + [x^2 + x] + 1 = [x^4 + x + 1] = [0]

If you're unfamilar with rings, Z2 is the ring containing two elements [0] and [1], etc.

Hope this helps.

Featured Post

On Demand Webinar - Networking for the Cloud Era

This webinar discusses:
-Common barriers companies experience when moving to the cloud
-How SD-WAN changes the way we look at networks
-Best practices customers should employ moving forward with cloud migration
-What happens behind the scenes of SteelConnect’s one-click button

Question has a verified solution.

If you are experiencing a similar issue, please ask a related question

Introduction On a scale of 1 to 10, how would you rate our Product? Many of us have answered that question time and time again. But only a few of us have had the pleasure of receiving a stack of the filled out surveys and being asked to do somethi…
Foreword (May 2015) This web page has appeared at Google.  It's definitely worth considering! How to Know You are Making a Difference at EE In August, 2013, one …
Although Jacob Bernoulli (1654-1705) has been credited as the creator of "Binomial Distribution Table", Gottfried Leibniz (1646-1716) did his dissertation on the subject in 1666; Leibniz you may recall is the co-inventor of "Calculus" and beat Isaac…
Finds all prime numbers in a range requested and places them in a public primes() array. I've demostrated a template size of 30 (2 * 3 * 5) but larger templates can be built such 210  (2 * 3 * 5 * 7) or 2310  (2 * 3 * 5 * 7 * 11). The larger templa…

737 members asked questions and received personalized solutions in the past 7 days.

Join the community of 500,000 technology professionals and ask your questions.

Join & Ask a Question