Solved

Math Induction

Posted on 2006-06-10
4
273 Views
Last Modified: 2012-06-27
I am trying to figure out a problem and need some help.
The problem is listed below.

Using induction, verify that each equation is true for every positive integer n.
1 · 2 + 2 · 3 + 3 · 4 + ......+ n ( n + 1 ) =       (n (n + 1)(n + 2) ) / 3

I can get the number 1 to work for n but numbers above that I cannot. Any help would be appreciated.
0
Comment
Question by:rcanter
4 Comments
 
LVL 84

Expert Comment

by:ozo
ID: 16879675
Assuming it works for n (e.g. 1) you need to prove it works for n+1
Can you find the difference between the sum for n and the sum for n+1?
0
 

Author Comment

by:rcanter
ID: 16879718
I cannot get n+1 to work, although I may be doing something wrong. I do not understand induction much and this is the first time I have tried, although it has been a long night and day of trying :-(
0
 
LVL 18

Assisted Solution

by:JR2003
JR2003 earned 200 total points
ID: 16880170
You need to show that
((n+1)(n + 2)(n + 3) ) / 3     is equal to     (n (n + 1)(n + 2) ) / 3 + ((n+1)(n+2))

=(n (n + 1)(n + 2) ) / 3 + (3(n+1)(n+2))/3

which simplifies to:
((n+1)(n + 2)(n + 3) ) / 3
0
 
LVL 37

Accepted Solution

by:
Harisha M G earned 300 total points
ID: 16880258
The principle of mathematical induction is very simple. You show that it works for atleast one number (generally 1) and then prove that if it works for n, it works for n+1 too.

That way, if it works for 1, then it should work for 1+1 = 2 also.
Since it works for 2, it should work for 2+1 = 3 also, and so on..

You said you can find that it works for 1. So, I will show the other part...

1 · 2 + 2 · 3 + 3 · 4 + ......+ n ( n + 1 ) =      (n (n + 1)(n + 2) ) / 3

Now, you need to add the "next term of the last term" of the LHS to both the sides..
Last term of LHS = n(n+1)
Next term (Change n to n+1, that's all)  = (n+1)(n+1 + 1) = (n+1)(n+2)

So, adding it to both the sides,

1 · 2 + 2 · 3 + 3 · 4 + ......+ n(n+1) + (n+1)(n+2) =  (n(n+1)(n+2))/3 + (n+1)(n+2)

Which is nothing but..

1 · 2 + 2 · 3 + 3 · 4 + ...... + (n+1)(n+2) =  (n(n+1)(n+2))/3 + 3(n+1)(n+2)/3
                        = (n+1)(n+2)(n+3)/3

You can see that the RHS is nothing but the original RHS, but n being replaced by n+1.

That proves that if it works for n, it must work for n+1 too..
0

Featured Post

How to run any project with ease

Manage projects of all sizes how you want. Great for personal to-do lists, project milestones, team priorities and launch plans.
- Combine task lists, docs, spreadsheets, and chat in one
- View and edit from mobile/offline
- Cut down on emails

Join & Write a Comment

Suggested Solutions

How to Win a Jar of Candy Corn: A Scientific Approach! I love mathematics. If you love mathematics also, you may enjoy this tip on how to use math to win your own jar of candy corn and to impress your friends. As I said, I love math, but I gu…
Lithium-ion batteries area cornerstone of today's portable electronic devices, and even though they are relied upon heavily, their chemistry and origin are not of common knowledge. This article is about a device on which every smartphone, laptop, an…
Sending a Secure fax is easy with eFax Corporate (http://www.enterprise.efax.com). First, Just open a new email message.  In the To field, type your recipient's fax number @efaxsend.com. You can even send a secure international fax — just include t…
This video demonstrates how to create an example email signature rule for a department in a company using CodeTwo Exchange Rules. The signature will be inserted beneath users' latest emails in conversations and will be displayed in users' Sent Items…

759 members asked questions and received personalized solutions in the past 7 days.

Join the community of 500,000 technology professionals and ask your questions.

Join & Ask a Question

Need Help in Real-Time?

Connect with top rated Experts

19 Experts available now in Live!

Get 1:1 Help Now