Solved

verifying the inequality using induction

Posted on 2006-06-11
5
306 Views
Last Modified: 2012-06-27
I have a question about verifying the inequality using induction.

2N + 1<or =  2^N,       N = 3, 4,....      

So far, I have the basis
2(3) + 1 < or = 2^3
6 + 1 < or = 8                                    
7 < or = 8

Trying to do the induction step and it is not making much sense. I am assuming that since I am using 3 in the basis, I am using n+3 in the inductive? The problem I think I am having the most trouble with is the power of.
This is what I have, although I am sure it is completely incorrect.

2(n+3) + 1 < or = 2^n+3
2n + 6 + 1 < or = 2^n+3
2n + 7 < or = 2^n+3

0
Comment
Question by:rcanter
  • 3
  • 2
5 Comments
 
LVL 37

Accepted Solution

by:
Harisha M G earned 500 total points
ID: 16881566
Hi, you have proved it for N=3. Now, put N=N+1, and prove that

2(N+1) + 1 <=  2^(N+1)

Now, you have

2N + 1 <=  2^N

Multiply both sides by 2

4N + 2 <= 2^(N+1)

2(N+1) + 2N <= 2^(N+1)

Since N is positive, 2N is also positive. Also, N >= 3. Hence, 2N >= 6 and obviously 2N >= 1, so we can write,

2(N+1) + 1 <= 2(N+1) + 2N <= 2^(N+1)

Removing the intermediate term,

2(N+1) + 1 <= 2^(N+1)

Hence the proof


---
Harish
0
 

Author Comment

by:rcanter
ID: 16881572
U are awesome!!! Thanks so much!!!
One quick question, just so that I understand.  Even that I used S(3) for the basis, I am using S(n+1) for the inductive?
0
 
LVL 37

Expert Comment

by:Harisha M G
ID: 16881587
rcanter, yes. You used S(3) because it is given in the problem itself that N = 3,4...

As I told in the previous question, you need to prove it that the (in)equality holds for atleast one value, which in case if it is not given, will be taken generally as 1
0
 

Author Comment

by:rcanter
ID: 16881614
I am not understanding how this could be proven.
2N + 1 <=  2^N

Multiply both sides by 2     ***why am i multiplying by 2?***

4N + 2 <= 2^(N+1)

2(N+1) + 2N <= 2^(N+1)     **why wouldnt this be 2(n+1) + 1? how did 2n figure in?**

Since N is positive, 2N is also positive. Also, N >= 3. Hence, 2N >= 6 and obviously 2N >= 1, so we can write,

2(N+1) + 1 <= 2(N+1) + 2N <= 2^(N+1)

Removing the intermediate term,

2(N+1) + 1 <= 2^(N+1)

Hence the proof
0
 
LVL 37

Expert Comment

by:Harisha M G
ID: 16881703
you need to get N+1 in either side and then prove the other side
0

Featured Post

Highfive Gives IT Their Time Back

Highfive is so simple that setting up every meeting room takes just minutes and every employee will be able to start or join a call from any room with ease. Never be called into a meeting just to get it started again. This is how video conferencing should work!

Join & Write a Comment

Suggested Solutions

Complex Numbers are funny things.  Many people have a basic understanding of them, some a more advanced.  The confusion usually arises when that pesky i (or j for Electrical Engineers) appears and understanding the meaning of a square root of a nega…
This article seeks to propel the full implementation of geothermal power plants in Mexico as a renewable energy source.
It is a freely distributed piece of software for such tasks as photo retouching, image composition and image authoring. It works on many operating systems, in many languages.
In this tutorial you'll learn about bandwidth monitoring with flows and packet sniffing with our network monitoring solution PRTG Network Monitor (https://www.paessler.com/prtg). If you're interested in additional methods for monitoring bandwidt…

757 members asked questions and received personalized solutions in the past 7 days.

Join the community of 500,000 technology professionals and ask your questions.

Join & Ask a Question

Need Help in Real-Time?

Connect with top rated Experts

21 Experts available now in Live!

Get 1:1 Help Now