Be seen. Boost your question’s priority for more expert views and faster solutions

A spherical cloud of gas of radius 3km is more dense at the center that toward the edge, at a distance p km from the center the density is d(p) = 3 - p, write an integral representing the total mass of the cloud and evaluate it.

My problem is not evaluating the integral it is setting it up.

Clearly the best option is a triple integral in spherical coordinates.

/pi / 2pi / 3

| | | d(p)p^2 sin(x) dp dy dx

| | |

/0 /0 /0

Here is my problem, I've tried with d(p) = 3-p like the problem states and I get a very strange answer, the homework solution uses p - 3, and I dont see why that make this change. Please help.

-Brian

My problem is not evaluating the integral it is setting it up.

Clearly the best option is a triple integral in spherical coordinates.

/pi / 2pi / 3

| | | d(p)p^2 sin(x) dp dy dx

| | |

/0 /0 /0

Here is my problem, I've tried with d(p) = 3-p like the problem states and I get a very strange answer, the homework solution uses p - 3, and I dont see why that make this change. Please help.

-Brian

Thanks for the response. I'm pretty sure that a sitution such as this setup in cartesian would be quite a bit messier.

-Brian

And p-3 is just -d(p), by the way; if you set the limits up differently, that can turn up.

Whether they picked the same limits matters.

In what way is that a strange answer?

Surface of a sphere of radius r is 4*pi*r^2

density is 3-r

So, total mass of the cloud is the integral of (3-r)*(4*pi*r^2)dr from 0 to 3.

(3-r)*(4*pi*r^2)dr

(12*pi*r^2 - 4*pi*r^3)dr

This integrates to:

4*pi*r^3 - pi*r^4

Evaluate this from 0 to 3

4*pi*27 - pi*81 - (0 - 0)

27pi

I have to do it in either cylindrical or spherical coordinates, for this section i cannot use cartesian coordinates.

G(x,y,p) = d(p)p^2 sin(x)

== ( 3p^2 - p^3 ) sin(x)

Integrate[ G(x,y,p), {p from 0 to 3} ] =>

( p^3 - p^4/4 ) sin(x) |{p from 0 to 3} =>

H(x) => ( 27 - 81/4 ) sin(x) => 27/4 sin(x)

Integrate [ H(x) ]{y from 0 to 2pi} => 2pi * H(x)

Integrate [ 27/4 sin(x) * (2pi) ] {p from 0 to pi} =>

[ 27/4 * -cos(x) * (2pi) ]_x=0^\pi => ...

-27 pi / 2 - - ( 27pi / 2 ) = 2 * (27/pi) = 27pi

I'm having a hard time following the solution you posted. I'm not familiar with the notation you're using.

It's not as if there are different orders to execute these steps in, start evaluating the inner integral first,

then the middle one, then the outer integral.

a => b => c is just a mixed up way of saying a leads to b, and then a=c.

E(q)|_q=q0^q1 is just a shorthand for ' ( E(q1) - E(q0) )'.

Can you also please explain your last line:

-27 pi / 2 - - ( 27pi / 2 ) = 2 * (27/pi) = 27pi

[ 27/4 * -cos(x) * (2pi) ] {from 0 to pi} =

(27/2 * -cos(pi) * pi) - (27/2 * -cos(0) * pi) = 2 * (27pi/2)

Taking JR2003's point about concentric shells, each of area 4*pi*r² (using r rather than p for the radius), each of thickness dr (delta r) and of density (3-r) gives a mass of 4*pi*r²*(3-r)*dr. This needs to be integrated from r=0 (the middle) to r=3 (the outer limit).

The integration is quite simple and gives 4*pi*r^3 - pi*r^4

With the lower limit of zero this is zero, the upper limit is 4*pi*3^3 - pi*3^4

Factor out pi and 3 cubed (27) gives 27*pi*(4-3) or simply 27pi.

There is no need for triple integrals nor trigonometrical functions.

Clearly the best option is a triple integral in spherical coordinates.

Now I've no idea where he got this from - it might even be his own - but I'll agrue the daylights out of ANY maths teacher about things like this. The BEST option is the SIMPLEST option. Mathematics is not about showing how clever we are, but about using tools to solve practical problems. There are relatively few problems which can be solved in spherical coordinates and those in 3-d Cartesian are also messy.

Well this problem was taken out of the section titled "Triple Integrals in Cylindrical and Spherical Coordinates", so I think it is implied that the problem _should_ be done in one of those two coordinate systems. I should have probably been clearer with this from the start, my apologies. My teacher provided his solution using a triple integral, however, using p - 3 vs 3 - p, that is really where my confusion is coming from.

-Brian

I'm confused however by the fact that:

SA = 4pi*r^2

D = 3 - p

SA has units of (distance^2)

D has units of (mass/distance^3)

SA * D = MASS/DISTANCE .... not just mass as we are looking for. Now its clear that it works...i'm just confused how that part works.

-Brian

Makes sense, I forgot dr had units of distance.

Hmmmm. The problem is completely symetric about the origin. It is the worst example for triple integration I can think of. Presumably one considers a volume element at (r,theta,phi) with density 3-r and integrate all these over the spheroid.

I'll think out a better example for triple integration and post it as a question.

How so, in spherical coordinates your phi would go from 0->pi, thetha 0->2pi, and your radius from 0->3, to me it seems pretty basic.

brian

The density is proportional to the radius, ie: to r. The other two coordinates are not involved with the density only with the space, therefore the two integrations of theta and phi actually produce a shell of area 4*pi*r². As as question to show triple integration using spherical coordinates it's weak to say the least.

x goes from 0 to pi, y goes from 0 to 2pi, p goes from 0 to 3

(3-p)p^2 (sin(x) dy dx) dp

While we integrate on x and y, the terms with p and dp are just multiplying constants so we can factor them out and ignore them for now.

sin(x) dy dx

Integrate on x

-cos(x) dy from 0 to pi

(1 - -1) dy

2dy

Integrate this on y

2y from 0 to 2pi

4pi

Merging this back with the original integral, we get:

(3-p)4pi p^2 dp over p from 0 to 3

Which is exactly the simple integral I and others suggested.

extra two integrations just boil down to multiplication by the area.

However, I don't see anything erroneous with author's choice to set it up as a triple integral, from what I saw,

he did it correctly -- Whether it was a good choice or not is subjective.

If there was a technical error, it was almost certainly in the evaluation.

I'll send you a sledge hammer for Christmas, so that you can crack your wallnuts.

Question has a verified solution.

Are you are experiencing a similar issue? Get a personalized answer when you ask a related question.

Have a better answer? Share it in a comment.

All Courses

From novice to tech pro — start learning today.

The mass of a thin spherical shell of radius r1 and thickness dr is:

(3-r1)4*pi*r1^2 dr

So I think you just need to integrate this from 0 to 3 wrt r.