Solved

Solve quartic using Ferrari's method

Posted on 2006-11-03
3
1,778 Views
Last Modified: 2012-06-21
I wrote the C++ code for Ferrari's method described at http://en.wikipedia.org/wiki/Quartic_equation (skip to "Summary of Ferrari's method")

void SolveQuarticFerrari(double A, double B, double C, double D, double E, double roots[4])
{
      complex cp_roots[4];
#ifdef _DEBUG // test for correctness
      cp_roots[0] = complex(0,1)*complex(1,1);
      cp_roots[1] = complex(0,1)/complex(1,1);
      cp_roots[2] = complex(3,1)-complex(7,2);
      cp_roots[3] = complex(2,1)+complex(9,1);
      cp_roots[0] = cp_sqrt(cp_roots[0]);
      cp_roots[1] = cp_cuberoot(cp_roots[1]);
      cp_roots[2] = -cp_roots[2];
      cp_roots[3] = cube(cp_roots[3]);
#endif

      double alpha = -3/8*sqr(B/A) + C/A;
      double beta = (B*B*B)/(8*A*A*A) - (B*C)/(2*A*A) + D/A;
      double gamma = (-3*B*B*B*B)/(256*A*A*A*A) + (C*B*B)/(16*A*A*A) - (B*D)/(4*A*A) + E/A;

      if ( SimdEqual(beta, 0) )
      {
            complex u1 = (complex(-alpha) + cp_sqrt(sqr(alpha)-4*gamma))/complex(2);
            complex u2 = (complex(-alpha) - cp_sqrt(sqr(alpha)-4*gamma))/complex(2);
            cp_roots[0] = +cp_sqrt(u1) - complex(B/(4*A));
            cp_roots[1] = -cp_sqrt(u1) - complex(B/(4*A));
            cp_roots[2] = +cp_sqrt(u2) - complex(B/(4*A));
            cp_roots[3] = -cp_sqrt(u2) - complex(B/(4*A));
      }
      else
      {
            double P = -sqr(alpha)/12 - gamma;
            double Q = -cube(alpha)/108 + alpha*gamma/3 - sqr(beta)/8;

            complex R = complex(Q/2)+cp_sqrt(Q*Q/4+P*P*P/27);

            complex U = isreal(R) ? cubic_rt(R.real) : cp_cuberoot(R);

            complex y = complex(-5/6*alpha) - U;
            if ( U )
                  y = y + complex(P/3)/U;

            complex W = cp_sqrt(complex(alpha)+complex(2)*y);

            cp_roots[0] = complex(-B/(4*A)) + (+W+cp_sqrt(-(complex(3*alpha)+complex(2)*y+complex(2*beta)/W)))/complex(2);
            cp_roots[1] = complex(-B/(4*A)) + (+W-cp_sqrt(-(complex(3*alpha)+complex(2)*y+complex(2*beta)/W)))/complex(2);
            cp_roots[2] = complex(-B/(4*A)) + (-W+cp_sqrt(-(complex(3*alpha)+complex(2)*y-complex(2*beta)/W)))/complex(2);
            cp_roots[3] = complex(-B/(4*A)) + (-W-cp_sqrt(-(complex(3*alpha)+complex(2)*y-complex(2*beta)/W)))/complex(2);
      }

      if ( isreal(cp_roots[0]) ) roots[0] = cp_roots[0].real;
      if ( isreal(cp_roots[1]) ) roots[1] = cp_roots[1].real;
      if ( isreal(cp_roots[2]) ) roots[2] = cp_roots[2].real;
      if ( isreal(cp_roots[3]) ) roots[3] = cp_roots[3].real;
}

complex is defined as
struct complex { double real, imag; /* plus some methods */ };

Here are my two sample inputs, outputs and real answers:

SAMPLE#1 (does not pass beta=0 test)
input:
A      1.0000000000000000      double
B      0.00000000000000000      double
C      6.0000000000000000      double
D      -60.000000000000000      double
E      36.000000000000000      double

output:
cp_roots      complex [4]
+      [0x0]      {real=2.4504888521002162 imag=1.6981366294306341 }      complex
+      [0x1]      {real=2.4504888521002171 imag=-1.6981366294306341 }      complex
+      [0x2]      {real=-2.4504888521002162 imag=3.8892317000046215 }      complex
+      [0x3]      {real=-2.4504888521002171 imag=-3.8892317000046215 }      complex

correct answer:
-1.87213664412, +3.8101353368
-1.87213664412, -3.8101353368
 3.09987442402, 0
 .644398864227, 0

=======================

SAMPLE#2: (passes beta=0 test)
input:
A      0.015624996274709951      double
B      8.5355328884178014      double
C      1086.1359215487923      double
D      -21727.922061357851      double
E      100574.00000000000      double

output:
cp_roots      complex [4]
+      [0x0]      {real=-136.56855877516438 imag=84.916864289141827 }      complex
+      [0x1]      {real=-136.56855877516438 imag=-84.916864289141827 }      complex
+      [0x2]      {real=-136.56855877516435 imag=249.60336879045511 }      complex
+      [0x3]      {real=-136.56855877516441 imag=-249.60336879045511 }      complex

correct answer:
-282.871516735
-281.442836722
9.73440081856
8.30571753803

What am I missing here?
0
Comment
Question by:jhshukla
[X]
Welcome to Experts Exchange

Add your voice to the tech community where 5M+ people just like you are talking about what matters.

  • Help others & share knowledge
  • Earn cash & points
  • Learn & ask questions
  • 3
3 Comments
 
LVL 84

Accepted Solution

by:
ozo earned 125 total points
ID: 17871538
-3/8 and -5/6 are integer divisions, which = 0
0
 
LVL 84

Expert Comment

by:ozo
ID: 17871593
how do you define plus some methods ?
What do you get for alpha,beta,gamma,P,Q,R,U,y,W with SolveQuarticFerrari(1.0,0.0,6.0,-60.0,36.0)?
0
 
LVL 84

Expert Comment

by:ozo
ID: 17871730
-3/8==0 and -5/6==0 seem to be the problem, I was able to duplicate your error when I choose the right cube root.

SimdEqual(beta, 0) may be problematic too.  floating point rounding errors may mean beta is not exactly 0
0

Featured Post

Announcing the Most Valuable Experts of 2016

MVEs are more concerned with the satisfaction of those they help than with the considerable points they can earn. They are the types of people you feel privileged to call colleagues. Join us in honoring this amazing group of Experts.

Question has a verified solution.

If you are experiencing a similar issue, please ask a related question

Templates For Beginners Or How To Encourage The Compiler To Work For You Introduction This tutorial is targeted at the reader who is, perhaps, familiar with the basics of C++ but would prefer a little slower introduction to the more ad…
Introduction This article is the first in a series of articles about the C/C++ Visual Studio Express debugger.  It provides a quick start guide in using the debugger. Part 2 focuses on additional topics in breakpoints.  Lastly, Part 3 focuses on th…
The viewer will learn how to user default arguments when defining functions. This method of defining functions will be contrasted with the non-default-argument of defining functions.
The viewer will be introduced to the member functions push_back and pop_back of the vector class. The video will teach the difference between the two as well as how to use each one along with its functionality.

615 members asked questions and received personalized solutions in the past 7 days.

Join the community of 500,000 technology professionals and ask your questions.

Join & Ask a Question