Solved

Solve quartic using Ferrari's method

Posted on 2006-11-03
3
1,767 Views
Last Modified: 2012-06-21
I wrote the C++ code for Ferrari's method described at http://en.wikipedia.org/wiki/Quartic_equation (skip to "Summary of Ferrari's method")

void SolveQuarticFerrari(double A, double B, double C, double D, double E, double roots[4])
{
      complex cp_roots[4];
#ifdef _DEBUG // test for correctness
      cp_roots[0] = complex(0,1)*complex(1,1);
      cp_roots[1] = complex(0,1)/complex(1,1);
      cp_roots[2] = complex(3,1)-complex(7,2);
      cp_roots[3] = complex(2,1)+complex(9,1);
      cp_roots[0] = cp_sqrt(cp_roots[0]);
      cp_roots[1] = cp_cuberoot(cp_roots[1]);
      cp_roots[2] = -cp_roots[2];
      cp_roots[3] = cube(cp_roots[3]);
#endif

      double alpha = -3/8*sqr(B/A) + C/A;
      double beta = (B*B*B)/(8*A*A*A) - (B*C)/(2*A*A) + D/A;
      double gamma = (-3*B*B*B*B)/(256*A*A*A*A) + (C*B*B)/(16*A*A*A) - (B*D)/(4*A*A) + E/A;

      if ( SimdEqual(beta, 0) )
      {
            complex u1 = (complex(-alpha) + cp_sqrt(sqr(alpha)-4*gamma))/complex(2);
            complex u2 = (complex(-alpha) - cp_sqrt(sqr(alpha)-4*gamma))/complex(2);
            cp_roots[0] = +cp_sqrt(u1) - complex(B/(4*A));
            cp_roots[1] = -cp_sqrt(u1) - complex(B/(4*A));
            cp_roots[2] = +cp_sqrt(u2) - complex(B/(4*A));
            cp_roots[3] = -cp_sqrt(u2) - complex(B/(4*A));
      }
      else
      {
            double P = -sqr(alpha)/12 - gamma;
            double Q = -cube(alpha)/108 + alpha*gamma/3 - sqr(beta)/8;

            complex R = complex(Q/2)+cp_sqrt(Q*Q/4+P*P*P/27);

            complex U = isreal(R) ? cubic_rt(R.real) : cp_cuberoot(R);

            complex y = complex(-5/6*alpha) - U;
            if ( U )
                  y = y + complex(P/3)/U;

            complex W = cp_sqrt(complex(alpha)+complex(2)*y);

            cp_roots[0] = complex(-B/(4*A)) + (+W+cp_sqrt(-(complex(3*alpha)+complex(2)*y+complex(2*beta)/W)))/complex(2);
            cp_roots[1] = complex(-B/(4*A)) + (+W-cp_sqrt(-(complex(3*alpha)+complex(2)*y+complex(2*beta)/W)))/complex(2);
            cp_roots[2] = complex(-B/(4*A)) + (-W+cp_sqrt(-(complex(3*alpha)+complex(2)*y-complex(2*beta)/W)))/complex(2);
            cp_roots[3] = complex(-B/(4*A)) + (-W-cp_sqrt(-(complex(3*alpha)+complex(2)*y-complex(2*beta)/W)))/complex(2);
      }

      if ( isreal(cp_roots[0]) ) roots[0] = cp_roots[0].real;
      if ( isreal(cp_roots[1]) ) roots[1] = cp_roots[1].real;
      if ( isreal(cp_roots[2]) ) roots[2] = cp_roots[2].real;
      if ( isreal(cp_roots[3]) ) roots[3] = cp_roots[3].real;
}

complex is defined as
struct complex { double real, imag; /* plus some methods */ };

Here are my two sample inputs, outputs and real answers:

SAMPLE#1 (does not pass beta=0 test)
input:
A      1.0000000000000000      double
B      0.00000000000000000      double
C      6.0000000000000000      double
D      -60.000000000000000      double
E      36.000000000000000      double

output:
cp_roots      complex [4]
+      [0x0]      {real=2.4504888521002162 imag=1.6981366294306341 }      complex
+      [0x1]      {real=2.4504888521002171 imag=-1.6981366294306341 }      complex
+      [0x2]      {real=-2.4504888521002162 imag=3.8892317000046215 }      complex
+      [0x3]      {real=-2.4504888521002171 imag=-3.8892317000046215 }      complex

correct answer:
-1.87213664412, +3.8101353368
-1.87213664412, -3.8101353368
 3.09987442402, 0
 .644398864227, 0

=======================

SAMPLE#2: (passes beta=0 test)
input:
A      0.015624996274709951      double
B      8.5355328884178014      double
C      1086.1359215487923      double
D      -21727.922061357851      double
E      100574.00000000000      double

output:
cp_roots      complex [4]
+      [0x0]      {real=-136.56855877516438 imag=84.916864289141827 }      complex
+      [0x1]      {real=-136.56855877516438 imag=-84.916864289141827 }      complex
+      [0x2]      {real=-136.56855877516435 imag=249.60336879045511 }      complex
+      [0x3]      {real=-136.56855877516441 imag=-249.60336879045511 }      complex

correct answer:
-282.871516735
-281.442836722
9.73440081856
8.30571753803

What am I missing here?
0
Comment
Question by:jhshukla
  • 3
3 Comments
 
LVL 84

Accepted Solution

by:
ozo earned 125 total points
ID: 17871538
-3/8 and -5/6 are integer divisions, which = 0
0
 
LVL 84

Expert Comment

by:ozo
ID: 17871593
how do you define plus some methods ?
What do you get for alpha,beta,gamma,P,Q,R,U,y,W with SolveQuarticFerrari(1.0,0.0,6.0,-60.0,36.0)?
0
 
LVL 84

Expert Comment

by:ozo
ID: 17871730
-3/8==0 and -5/6==0 seem to be the problem, I was able to duplicate your error when I choose the right cube root.

SimdEqual(beta, 0) may be problematic too.  floating point rounding errors may mean beta is not exactly 0
0

Featured Post

Free Tool: SSL Checker

Scans your site and returns information about your SSL implementation and certificate. Helpful for debugging and validating your SSL configuration.

One of a set of tools we are providing to everyone as a way of saying thank you for being a part of the community.

Question has a verified solution.

If you are experiencing a similar issue, please ask a related question

Suggested Solutions

Container Orchestration platforms empower organizations to scale their apps at an exceptional rate. This is the reason numerous innovation-driven companies are moving apps to an appropriated datacenter wide platform that empowers them to scale at a …
Basic understanding on "OO- Object Orientation" is needed for designing a logical solution to solve a problem. Basic OOAD is a prerequisite for a coder to ensure that they follow the basic design of OO. This would help developers to understand the b…
The viewer will learn how to user default arguments when defining functions. This method of defining functions will be contrasted with the non-default-argument of defining functions.
The viewer will be introduced to the technique of using vectors in C++. The video will cover how to define a vector, store values in the vector and retrieve data from the values stored in the vector.

828 members asked questions and received personalized solutions in the past 7 days.

Join the community of 500,000 technology professionals and ask your questions.

Join & Ask a Question