livegirllove

asked on

# PI in binary

Help.

How does pi in binary corelate to normal binary numbers?

ie

11.00100100001111110110

I can see the binary 3.

11.

11 = 3 in binary. I got it...

but 1 = 1 in binary. and 4 = 100.

where does that fit in?

How does pi in binary corelate to normal binary numbers?

ie

11.00100100001111110110

I can see the binary 3.

11.

11 = 3 in binary. I got it...

but 1 = 1 in binary. and 4 = 100.

where does that fit in?

ASKER

whoa. LOL you are going to have to dumb that one down for me. That's basically what I saw on google. my problem is I tried to do the math my self and cant come up with the same answer.

Can you show me just 3.14 in binary and how you got to the answer.

thanks

Can you show me just 3.14 in binary and how you got to the answer.

thanks

SOLUTION

membership

Create a free account to see this answer

Signing up is free and takes 30 seconds.

**No credit card required.**
BTW, that was not 3.14 exactly. Those were the most significant bits you supplied for Pi. I do not have an easy way to get a dump of a binary representation for the value 3.14 any more.

Jim

Jim

ASKER CERTIFIED SOLUTION

membership

Create a free account to see this answer

Signing up is free and takes 30 seconds.

**No credit card required.**
t0 512 binary digits, PI in binary is

11.

00100100 00111111 01101010 10001000 10000101 10100011 00001000 11010011

00010011 00011001 10001010 00101110 00000011 01110000 01110011 01000100

10100100 00001001 00111000 00100010 00101001 10011111 00110001 11010000

00001000 00101110 11111010 10011000 11101100 01001110 01101100 10001001

01000101 00101000 00100001 11100110 00111000 11010000 00010011 01110111

10111110 01010100 01100110 11001111 00110100 11101001 00001100 01101100

11000000 10101100 00101001 10110111 11001001 01111100 01010000 11011101

00111111 10000100 11010101 10110101 10110101 01000111 00001001 00010111

go to Google, search for "Pi in Binary"

AW

11.

00100100 00111111 01101010 10001000 10000101 10100011 00001000 11010011

00010011 00011001 10001010 00101110 00000011 01110000 01110011 01000100

10100100 00001001 00111000 00100010 00101001 10011111 00110001 11010000

00001000 00101110 11111010 10011000 11101100 01001110 01101100 10001001

01000101 00101000 00100001 11100110 00111000 11010000 00010011 01110111

10111110 01010100 01100110 11001111 00110100 11101001 00001100 01101100

11000000 10101100 00101001 10110111 11001001 01111100 01010000 11011101

00111111 10000100 11010101 10110101 10110101 01000111 00001001 00010111

go to Google, search for "Pi in Binary"

AW

perl -e '$x=atan2(1,1)*4; for( 1..20 ){ printf"%b",int $x; $x -= int $x; $x *= 2; }'

110010010000111111011

110010010000111111011

1 * (2^ 1)

+ 1 * (2^0)

+ 0 * (2 ^ -1)

+ 0 * (2 ^ -2)

+ 1 * (2 ^ -3)

etc, decrementing the power of two by one for each successive binary digit.

Jim