Solved

Nonhomogeneous second order difference equation

Posted on 2007-11-20
10
405 Views
Last Modified: 2008-02-01
x(n+1) - 4x(n) + 3x(n-1) = 36n^2

What form will the particular solution take?

I tried x(n)=an^2+bn+c, but when I plugged it in, I got a 0 coefficient for the n^2 terms on the LHS.
What is an alternative to try?

Thanks
0
Comment
Question by:Beta07
  • 7
  • 2
10 Comments
 
LVL 27

Expert Comment

by:aburr
ID: 20322017
It has been a while since I have worked with difference equations but the following two reference might be of help.

Recurrence relation - Wikipedia, the free encyclopedia
A difference equation is a specific type of recurrence relation. ... Certain difference equations can be solved using z-transforms. ...
en.wikipedia.org/wiki/Recurrence_relation - 50k - Cached - Similar pages



Difference Equations
Purpose: To apply linear algebra concepts to study the properties of sequences defined by difference equations. Prerequisites: The concepts of linear ...
www.math.duke.edu/education/ccp/materials/linalg/diffeqs/index.html - 5k - Cached - Similar pages

0
 
LVL 84

Accepted Solution

by:
ozo earned 500 total points
ID: 20322711
a*b^n + c*n^3 + d*n^2 + e*n + f
0
 
LVL 2

Author Comment

by:Beta07
ID: 20322977
Interesting. The next question is:

x(n+1) - 4x(n) + 3x(n-1) = 3^n

Which I'm having the same problem with (getting 0 coefficients).

Would the particular solution take the form:

a*3^n + c*n^3 + d*n^2 + e*n + f

?
0
 
LVL 2

Author Comment

by:Beta07
ID: 20323018
> a*b^n + c*n^3 + d*n^2 + e*n + f

Isn't that the form of the general solution?
And is there a reason for having a cubic rather than a quadratic? ("Because it works" will suffice)
0
 
LVL 84

Expert Comment

by:ozo
ID: 20323068
x(n+1) - x(n)  = 36n^2 would be cubic
x(n+1) - 4x(n) = 0 would be exponential
0
Is Your Active Directory as Secure as You Think?

More than 75% of all records are compromised because of the loss or theft of a privileged credential. Experts have been exploring Active Directory infrastructure to identify key threats and establish best practices for keeping data safe. Attend this month’s webinar to learn more.

 
LVL 2

Author Comment

by:Beta07
ID: 20323102
Ahhh, very clever!

I'll give it a shot, thanks
0
 
LVL 2

Author Comment

by:Beta07
ID: 20323235
Hmm, when I plug

x(n) = a*b^n + c*n^3 + d*n^2 + e*n + f

into

x(n+1) - 4x(n) + 3x(n-1) = 36n^2

And equate coefficients, the only information I get out of it is:

d = 3c
c+d+e = 0

:-\
0
 
LVL 2

Author Comment

by:Beta07
ID: 20324326
I think I may have figured it (this method has worked for 3^n instead of 36n²), I'm just stuck on this one step;

The Shift Operator, E, is defined as:  E x(n) = x(n+1)
So obviously, E^k x(n) = x(n+k)

I need to define an annihilator A(E), such that:

A(E) n^2 = 0

An example for n is:

(E-1)^2 n = 0
0
 
LVL 2

Author Comment

by:Beta07
ID: 20324623
Oh, lol

(E-1)^4  n^2 = 0

:-)

Which makes sense from more than one perspective ..
0
 
LVL 2

Author Comment

by:Beta07
ID: 20324732
Ah, done it! :)

I used a slightly varied method to my previous attempts (obviously), but it practically paralleled ozo's solution; and in doing so, I realised where I went wrong with my first attempt with ozo's suggestion..

Thanks
0

Featured Post

Is Your Active Directory as Secure as You Think?

More than 75% of all records are compromised because of the loss or theft of a privileged credential. Experts have been exploring Active Directory infrastructure to identify key threats and establish best practices for keeping data safe. Attend this month’s webinar to learn more.

Question has a verified solution.

If you are experiencing a similar issue, please ask a related question

Suggested Solutions

Title # Comments Views Activity
how to find inverse of a nxn matrix when n is large ie n=8,10... 9 37
Proportion 4 43
Rounding Values 11 56
Vertical and Horizontal Shift 4 95
Introduction On a scale of 1 to 10, how would you rate our Product? Many of us have answered that question time and time again. But only a few of us have had the pleasure of receiving a stack of the filled out surveys and being asked to do somethi…
We are taking giant steps in technological advances in the field of wireless telephony. At just 10 years since the advent of smartphones, it is crucial to examine the benefits and disadvantages that have been report to us.
This is used to tweak the memory usage for your computer, it is used for servers more so than workstations but just be careful editing registry settings as it may cause irreversible results. I hold no responsibility for anything you do to the regist…
This is a video describing the growing solar energy use in Utah. This is a topic that greatly interests me and so I decided to produce a video about it.

867 members asked questions and received personalized solutions in the past 7 days.

Join the community of 500,000 technology professionals and ask your questions.

Join & Ask a Question

Need Help in Real-Time?

Connect with top rated Experts

16 Experts available now in Live!

Get 1:1 Help Now