Solved

Maximum number of regions n lines can dissect a plane

Posted on 2008-06-19
4
265 Views
Last Modified: 2010-04-21
I want to find the maximum number of regions that n lines can dissect a plane into.
Let F(n) represent this number.

Through trial and error, I have found that:

F(0)=1
F(1)=2
F(2)=4
F(3)=7

From which I have found a pattern:

F(n) = n + F(n-1)  =>  F(n) = n(n+1)/2 + 1 .

This equation makes some sense, but (assuming that it's accurate for all n), how would I PROVE it to be true?
As all I've done so far, is throw some extrapolation on top of some trial-and-error. Hardly rigorous.

Is such a proof something which I'd be capable of 'getting'? Or, does it depend on some very high-level mathematics?

Thanks
0
Comment
Question by:InteractiveMind
  • 2
4 Comments
 
LVL 53

Assisted Solution

by:Infinity08
Infinity08 earned 350 total points
ID: 21821475
Your formula is correct :

        http://mathworld.wolfram.com/PlaneDivisionbyLines.html
0
 
LVL 53

Accepted Solution

by:
Infinity08 earned 350 total points
ID: 21821480
Here's a proof by induction :

        http://www.jimloy.com/geometry/plane.htm

(no complicated maths ;) )
0
 
LVL 22

Assisted Solution

by:blu
blu earned 150 total points
ID: 21821653
You can always add a line that intersects all of the previous lines and does not pass through any previous point of intersection. Any line that is not parallel to any of the existing lines will pass through all of them. Thus, when adding the N+1 line, it will intersect with all of the previous N lines at exactly N points. Each of these N points is the endpoint of a line segment that bisects an existing region. If we consider the two regions bisected by the line after it no longer intersects any other lines, then as we follow the new line, each of the N intersection points adds one new region, plus the region left over when there is no more intersection points. Thus, for an existing plane with N lines, forming R(N) regions, adding one more line produces N+1 lines with R(N+!) regions, where R(N+1) = R(N) + N + 1. If we change that to a form in N, we get R(N) = N + F(N-1), which is what you had.

Is that sufficient? The conversion of the recurrence relation into a closed form just follows normal methods.
0
 
LVL 25

Author Closing Comment

by:InteractiveMind
ID: 31468733
Thanks
0

Featured Post

Better Security Awareness With Threat Intelligence

See how one of the leading financial services organizations uses Recorded Future as part of a holistic threat intelligence program to promote security awareness and proactively and efficiently identify threats.

Join & Write a Comment

Suggested Solutions

Complex Numbers are funny things.  Many people have a basic understanding of them, some a more advanced.  The confusion usually arises when that pesky i (or j for Electrical Engineers) appears and understanding the meaning of a square root of a nega…
Lithium-ion batteries area cornerstone of today's portable electronic devices, and even though they are relied upon heavily, their chemistry and origin are not of common knowledge. This article is about a device on which every smartphone, laptop, an…
Access reports are powerful and flexible. Learn how to create a query and then a grouped report using the wizard. Modify the report design after the wizard is done to make it look better. There will be another video to explain how to put the final p…
In this tutorial you'll learn about bandwidth monitoring with flows and packet sniffing with our network monitoring solution PRTG Network Monitor (https://www.paessler.com/prtg). If you're interested in additional methods for monitoring bandwidt…

758 members asked questions and received personalized solutions in the past 7 days.

Join the community of 500,000 technology professionals and ask your questions.

Join & Ask a Question

Need Help in Real-Time?

Connect with top rated Experts

17 Experts available now in Live!

Get 1:1 Help Now