[Webinar] Streamline your web hosting managementRegister Today

x
Solved

# Outward flux of surface

Posted on 2008-10-31
Medium Priority
844 Views
Consider the parametric curve: (sinh(t), cosh(t)), -1 <= t <= 1.
Revolve it about the x-axis to form a 3D surface, S.
I'm asked to use the Divergence Theorem to find the volume of the shape.

Obviously, if we choose f=(x,y,z), then div f = 3, and so:

(Volume Integral over V) div f = 3 * Volume of shape

and so, by the Divergence Theorem:

Volume of shape = 1/3 * (Surface Integral over S, D+, and D-) f dot N

where D+ and D- are the flat discs/surfaces either side of the shape, and N is the surface normal.

If I calculate and sum the surface integrals for D+ and D-, I get: 2*Pi*Sinh(1)*Cosh^2(1). This part seems trivial.

However, I don't seem to get an integrable function when I attempt to integrate f dot N over S.

Here's the basic outline of my attempt:

Expressing the surface parametrically in terms of (u,t):

x = t, y = Sqrt(1 + t^2)*Cos(u), z = Sqrt(1 + t^2)*Sin(u).

So, f = (x,y,z) = (t, Sqrt(1+t^2)*Cos(u), Sqrt(1+t^2)*Sin(u)).

Then I calculate the surface normal to be:
N = [t, -Sqrt(1+t^2)*Cos^2(u), -Sqrt(1+t^2)*Sin(u)] / Sqrt(2+Cos(2u)).

And then f dot N seems to simplify to:

f dot N = -1 / Sqrt(2 + Cos(2u)).

However, first of all, this doesn't seem easily integrable (elliptic function, blah blah?), but secondly, doesn't seem to depend on t (which I would expect of it).

So I'm guessing I've gone wrong somewhere. Does anyone get the surface normal to be different to me? Or, f dot N? Perhaps there's a more suitable parameterization?

Any help would be much appreciated, thanks.

0
Question by:InteractiveMind
• 2

LVL 25

Author Comment

ID: 22854650
Ah, I had forgotten to calculate the Jacobian. I get it to be:

Jacobian = 1 + t^2.

And so I need to find:

(Integral over S) (1+t^2) / Sqrt(2 + Cos(2u)),

but this still seems wrong (tooo difficult).
0

LVL 25

Accepted Solution

InteractiveMind earned 0 total points
ID: 22867149
Parameterise the surface as such:

alpha(t,u) = (sinh(t), cosh(t)*cos(u), cosh(t)*sin(u))

and don't normalise the surface normal. The integrate ends up as -cosh(t).
0

## Featured Post

Question has a verified solution.

If you are experiencing a similar issue, please ask a related question

A Guide to the PMT, FV, IPMT and PPMT Functions In MS Excel we have the PMT, FV, IPMT and PPMT functions, which do a fantastic job for interest rate calculations.  But what if you don't have Excel ? This article is for programmers looking to re…
How to Win a Jar of Candy Corn: A Scientific Approach! I love mathematics. If you love mathematics also, you may enjoy this tip on how to use math to win your own jar of candy corn and to impress your friends. As I said, I love math, but I gu…
This is a video describing the growing solar energy use in Utah. This is a topic that greatly interests me and so I decided to produce a video about it.
I've attached the XLSM Excel spreadsheet I used in the video and also text files containing the macros used below. https://filedb.experts-exchange.com/incoming/2017/03_w12/1151775/Permutations.txt https://filedb.experts-exchange.com/incoming/201…
###### Suggested Courses
Course of the Month9 days, 21 hours left to enroll