• C

# Program to Inverse a Matrix

which is the easiest way to invert a matrix in  C?
###### Who is Participating?

Commented:
Gauss-Jordan elimination is explained here :

http://mathworld.wolfram.com/Gauss-JordanElimination.html

There are several code samples floating around the net. You could use one of those or use it as a basis for implementing your own. Alternatively you can use a full-blown matrix library.
0

Commented:
found this see if it works for you:

``````//PennyBoki @ </dream.in.code>
#include <stdio.h>

int main()
{
float A[3][3];// the matrix that is entered by user
float B[3][3];//the transpose of a matrix A
float C[3][3];//the adjunct matrix of transpose of a matrix A not adjunct of A
double X[3][3];//the inverse
int i,j;
float x,n=0;//n is the determinant of A

printf("========== Enter matrix A =============================================\n");
for(i=0;i<3;i++)
{     printf("\n");
for(j=0;j<3;j++)
{
printf(" A[%d][%d]= ",i,j);
scanf("%f", &A[i][j]);
B[i][j]=0;
C[i][j]=0;
}
}

for(i=0,j=0;j<3;j++)
{
if(j==2)
n+=A[i][j]*A[i+1][0]*A[i+2][1];
else if(j==1)
n+=A[i][j]*A[i+1][j+1]*A[i+2][0];
else
n+=A[i][j]*A[i+1][j+1]*A[i+2][j+2];
}
for(i=2,j=0;j<3;j++)
{
if(j==2)
n-=A[i][j]*A[i-1][0]*A[i-2][1];
else if(j==1)
n-=A[i][j]*A[i-1][j+1]*A[i-2][0];
else
n-=A[i][j]*A[i-1][j+1]*A[i-2][j+2];
}

printf("\n========== The matrix A is ==========================================\n");
for(i=0;i<3;i++)
{
printf("\n");
for(j=0;j<3;j++)
{
printf(" A[%d][%d]= %.2f  ",i,j,A[i][j]);
}
}
printf("\n \n");

printf("=====================================================================\n\n");
printf("The determinant of matrix A is %.2f ",n);
printf("\n\n=====================================================================\n");

if(n!=0) x=1.0/n;
else
{
printf("Division by 0, not good!\n");
printf("=====================================================================\n\n");
return 0;
}
printf("\n========== The transpose of a matrix A ==============================\n");
for(i=0;i<3;i++)
{
printf("\n");
for(j=0;j<3;j++)
{

B[i][j]=A[j][i];
printf(" B[%d][%d]= %.2f  ",i,j,B[i][j]);

}
}
printf("\n\n");

C[0][0]=B[1][1]*B[2][2]-(B[2][1]*B[1][2]);
C[0][1]=(-1)*(B[1][0]*B[2][2]-(B[2][0]*B[1][2]));
C[0][2]=B[1][0]*B[2][1]-(B[2][0]*B[1][1]);

C[1][0]=(-1)*(B[0][1]*B[2][2]-B[2][1]*B[0][2]);
C[1][1]=B[0][0]*B[2][2]-B[2][0]*B[0][2];
C[1][2]=(-1)*(B[0][0]*B[2][1]-B[2][0]*B[0][1]);

C[2][0]=B[0][1]*B[1][2]-B[1][1]*B[0][2];
C[2][1]=(-1)*(B[0][0]*B[1][2]-B[1][0]*B[0][2]);
C[2][2]=B[0][0]*B[1][1]-B[1][0]*B[0][1];

printf("\n========== The adjunct matrix of transpose of the matrix A ==========\n");
for(i=0;i<3;i++)
{
printf("\n");
for(j=0;j<3;j++)
{
printf("C[%d][%d]= %.2f",i,j,C[i][j]);

}
}
printf("\n\n");

for(i=0;i<3;i++)
{
for(j=0;j<3;j++)
{
X[i][j]=C[i][j]*x;

}
}

printf("\n========== The inverse matrix of the matrix you entered!!! ==========\n");
for(i=0;i<3;i++)
{     printf("\n");
for(j=0;j<3;j++)
{
printf(" X[%d][%d]= %.2f",i,j,X[i][j]);

}
}
printf("\n\n");

return 0;
}
``````
0

Commented:
For smaller matrices (2x2, 3x3), doing it directly (by calculating a lot of determinants) is ok. For larger matrices, Gauss-Jordan elimination will be faster.

For matrices with special properties, more specific algorithms (faster) exist.
0

Author Commented:
Thanks unassassinable !
but its really very large code. and, which method it is based on ?

Thanks Infinity08 !
yes, i read Guass Jordon method, long ago. may i have any lnformation / link on it.

Thanks again.
0
Question has a verified solution.

Are you are experiencing a similar issue? Get a personalized answer when you ask a related question.

Have a better answer? Share it in a comment.