• Status: Solved
  • Priority: Medium
  • Security: Public
  • Views: 982
  • Last Modified:

adding foci points to my hyperbola in Matlab

Please find the matlab code below;

ok... I figured out that my foci points : d=+/- sqrt(a) +sqrt(b)
Is this ok?

and how do I add this to my code below

thanks in advance
% Program to plot the hyperbola
% y^2/a^2 - x^2/b^2 = 1
% The hyperbolae are open up/down, so that x is the independent variable
% for plotting. (Using the form x^2/a^2 - y^2/b^2 = 1 requires that y be
% the independent variable, which is awkward programming-wise.)
clear % all variables
figure(1), hold off % start a new figure
set(gca,'FontSize',14) % adjust fontsize
xmax = 30; ymax = 20;
x = linspace(-xmax,xmax,1001); % array of x values for plot : This function generates vector with 1001 points equally distributed between -xmax and xmax. 
                                %1001 is probably to have 500 points on one side (>0), 500 on another side (<0) and to include 0 itself. So you will have 
                                 %more natural numbers. 
 
a = 5; b = 3;
y=sqrt(((x.^2)./(b^2)+1).*a^2); % corresponding y values
plot(x,y)
hold on % add to current plot
plot(x,-y) % Plot other half of hyperbola
axis([-xmax xmax -ymax ymax]) % specify axis limits
xlabel('x')
ylabel('y')
title(['Hyperbola $y^2/a^2 - x^2/b^2 = 1$; $a$ = ', num2str(a), ...
', $b$ = ', num2str(b),'; (WR 1/21/08)'],'Interpreter','latex')
% Add axes
plot([0 0],[-ymax ymax],'k') % y axis (black line - k)
plot([-xmax xmax],[0 0],'k') % x axis
 
% Program to plot the elipse
% y^2/a^2 - x^2/b^2 = 1
 
y=sqrt(((-x.^2)./(b^2)+1).*a^2); % corresponding y values
plot(x,real(y))
hold on % add to current plot
plot(x,-y) % Plot other half of elipse
axis([-xmax xmax -ymax ymax]) % specify axis limits
xlabel('x')
ylabel('y')
title(['Hyperbola and elipse $y^2/a^2 + x^2/b^2 = 1$;$y^2/a^2 - x^2/b^2 = 1$; $a$ = ', num2str(a), ...
', $b$ = ', num2str(b),';'],'Interpreter','latex')
% Add axes
plot([0 0],[-ymax ymax],'k') % y axis (black line - k)
plot([-xmax xmax],[0 0],'k') % x axis

Open in new window

0
jtiernan2008
Asked:
jtiernan2008
  • 3
1 Solution
 
yuk99Commented:
Are those points at x=0? Then you can add them with
plot([0 0], [-sqrt(a)+sqrt(b) sqrt(a)+sqrt(b)],'o')

Are you sure it's correct? May be this?
plot([0 0], [-sqrt(a^2+b^2) sqrt(a^2+b^2)],'ro')

Or this?
plot([0 0], [-a a],'go')

Please define what are foci points?

0
 
jtiernan2008Author Commented:
http://mathworld.wolfram.com/Hyperbola.html

foci is focus plural

I actually done as follows.

f1=sqrt((a.^2))+sqrt((b.^2));
f2=-(sqrt((a.^2))+sqrt((b.^2)));
text(0,f1,'\leftarrow +d')
text(0,f2,'\leftarrow -d')

Is this correct?
0
 
yuk99Commented:
If c^2=a^2+b^2, then c=+-sqrt(a^2+b^2). Is it focus points?

I'd also add VerticalAlignment and HorizontalAlignment to make sure the pointers positions are closest.

f1=sqrt(a.^2+b.^2);
f2=-(sqrt(a.^2+b.^2));
plot([0 0],[f1 f2],'.')
text(0,f1,'\leftarrow +d','VerticalAlignment','middle','HorizontalAlignment','left')
text(0,f2,'\leftarrow -d','VerticalAlignment','middle','HorizontalAlignment','left')

Open in new window

0
 
yuk99Commented:
Or f2=-f1;
0

Featured Post

Concerto Cloud for Software Providers & ISVs

Can Concerto Cloud Services help you focus on evolving your application offerings, while delivering the best cloud experience to your customers? From DevOps to revenue models and customer support, the answer is yes!

Learn how Concerto can help you.

  • 3
Tackle projects and never again get stuck behind a technical roadblock.
Join Now