Solved

parametric equation

Posted on 2009-04-06
6
490 Views
Last Modified: 2012-05-06
Consider the line perpendicular to the surface z = x2 + y2 at the point (3, 4, 25).

Which of the following vectors is normal to the surface at the given point?

Below is the answer key that I don't understand
Response Details:
Equation of the surface
.
at the point (3,4,25) the eqn of the tgt plane is
 
  x(3)+y(4)-(1/2)(z+25)=0  ==> 6x+8y-z=25

where did they get the formula  x(3)+y(4)-(1/2)(z+25)=0 from?
.
0
Comment
Question by:kuntilanak
  • 3
  • 2
6 Comments
 
LVL 84

Expert Comment

by:ozo
ID: 24083331
does x2 + y2 mean x squared + y squared?

If so, compare dz/dx and dz/dy at that point with
 6x+8y-z=25
0
 

Author Comment

by:kuntilanak
ID: 24083364
it means squared
0
 

Author Comment

by:kuntilanak
ID: 24083369
so is the derivative of z equals to the tangent of the plane?
0
Free Tool: SSL Checker

Scans your site and returns information about your SSL implementation and certificate. Helpful for debugging and validating your SSL configuration.

One of a set of tools we are providing to everyone as a way of saying thank you for being a part of the community.

 
LVL 25

Accepted Solution

by:
InteractiveMind earned 500 total points
ID: 24085604
> Which of the following vectors is normal to the surface at the given point?

To find the surface normal:

Method 1.  Notice that the surface is just an inverted cone with its vertex at the origin? So the normal is quite intuitively going to be (x,y,-1/2).

Method 2.  If you can't quite spot the above, then you can work it out by first parametrising the surface:
  p(z,t) = (sqrt(z)*cos(t), sqrt(z)*sin(t), z),
then the surface normal is defined as:
  N = dp/dz x dp/dt    (where x is the vector cross product).
The result comes to (x,y,-1/2) again.


> 6x+8y-z=25

Are you sure they want you to derive it? It looks more like they're telling you what the tangent plane is, and then expect you to use it. If not though, then the tangent plane at (x_0, y_0) for a surface z=f(x,y) is defined as:

  z = f(x_0, y_0) + df/dx(x_0,y_0)(x-x_0) + df/dy(x_0,y_0)(y-y_0)

where f=x^2+y^2, and x_0=3, y_0=4 in your case. So plugging that in and rearranging leads to the required equation..
0
 

Author Comment

by:kuntilanak
ID: 24088179
>>Are you sure they want you to derive it? It looks more like they're telling you what the tangent plane is, >>and then expect you to use it. If not though, then the tangent plane at (x_0, y_0) for a surface >>z=f(x,y) is defined as:


I don't even know if they want me to derive it or not.... that's what I am asking though

>> what equation is this for
  z = f(x_0, y_0) + df/dx(x_0,y_0)(x-x_0) + df/dy(x_0,y_0)(y-y_0)
0
 
LVL 25

Expert Comment

by:InteractiveMind
ID: 24121388
"the tangent plane at (x_0, y_0) for a surface z=f(x,y)"
0

Featured Post

Free Tool: Port Scanner

Check which ports are open to the outside world. Helps make sure that your firewall rules are working as intended.

One of a set of tools we are providing to everyone as a way of saying thank you for being a part of the community.

Question has a verified solution.

If you are experiencing a similar issue, please ask a related question

Suggested Solutions

Title # Comments Views Activity
Odd Behavior 5 65
CAGR Calculation For SIP 13 83
Word Problem 6 65
Best prediction based on two lists of numbers  in excel 2 60
Have you ever thought of installing a power system that generates solar electricity to power your house? Some may say yes, while others may tell me no. But have you noticed that people around you are now considering installing such systems in their …
This article seeks to propel the full implementation of geothermal power plants in Mexico as a renewable energy source.
Finds all prime numbers in a range requested and places them in a public primes() array. I've demostrated a template size of 30 (2 * 3 * 5) but larger templates can be built such 210  (2 * 3 * 5 * 7) or 2310  (2 * 3 * 5 * 7 * 11). The larger templa…
I've attached the XLSM Excel spreadsheet I used in the video and also text files containing the macros used below. https://filedb.experts-exchange.com/incoming/2017/03_w12/1151775/Permutations.txt https://filedb.experts-exchange.com/incoming/201…

856 members asked questions and received personalized solutions in the past 7 days.

Join the community of 500,000 technology professionals and ask your questions.

Join & Ask a Question