Solved

parametric equation

Posted on 2009-04-06
6
492 Views
Last Modified: 2012-05-06
Consider the line perpendicular to the surface z = x2 + y2 at the point (3, 4, 25).

Which of the following vectors is normal to the surface at the given point?

Below is the answer key that I don't understand
Response Details:
Equation of the surface
.
at the point (3,4,25) the eqn of the tgt plane is
 
  x(3)+y(4)-(1/2)(z+25)=0  ==> 6x+8y-z=25

where did they get the formula  x(3)+y(4)-(1/2)(z+25)=0 from?
.
0
Comment
Question by:kuntilanak
[X]
Welcome to Experts Exchange

Add your voice to the tech community where 5M+ people just like you are talking about what matters.

  • Help others & share knowledge
  • Earn cash & points
  • Learn & ask questions
  • 3
  • 2
6 Comments
 
LVL 84

Expert Comment

by:ozo
ID: 24083331
does x2 + y2 mean x squared + y squared?

If so, compare dz/dx and dz/dy at that point with
 6x+8y-z=25
0
 

Author Comment

by:kuntilanak
ID: 24083364
it means squared
0
 

Author Comment

by:kuntilanak
ID: 24083369
so is the derivative of z equals to the tangent of the plane?
0
Industry Leaders: We Want Your Opinion!

We value your feedback.

Take our survey and automatically be enter to win anyone of the following:
Yeti Cooler, Amazon eGift Card, and Movie eGift Card!

 
LVL 25

Accepted Solution

by:
InteractiveMind earned 500 total points
ID: 24085604
> Which of the following vectors is normal to the surface at the given point?

To find the surface normal:

Method 1.  Notice that the surface is just an inverted cone with its vertex at the origin? So the normal is quite intuitively going to be (x,y,-1/2).

Method 2.  If you can't quite spot the above, then you can work it out by first parametrising the surface:
  p(z,t) = (sqrt(z)*cos(t), sqrt(z)*sin(t), z),
then the surface normal is defined as:
  N = dp/dz x dp/dt    (where x is the vector cross product).
The result comes to (x,y,-1/2) again.


> 6x+8y-z=25

Are you sure they want you to derive it? It looks more like they're telling you what the tangent plane is, and then expect you to use it. If not though, then the tangent plane at (x_0, y_0) for a surface z=f(x,y) is defined as:

  z = f(x_0, y_0) + df/dx(x_0,y_0)(x-x_0) + df/dy(x_0,y_0)(y-y_0)

where f=x^2+y^2, and x_0=3, y_0=4 in your case. So plugging that in and rearranging leads to the required equation..
0
 

Author Comment

by:kuntilanak
ID: 24088179
>>Are you sure they want you to derive it? It looks more like they're telling you what the tangent plane is, >>and then expect you to use it. If not though, then the tangent plane at (x_0, y_0) for a surface >>z=f(x,y) is defined as:


I don't even know if they want me to derive it or not.... that's what I am asking though

>> what equation is this for
  z = f(x_0, y_0) + df/dx(x_0,y_0)(x-x_0) + df/dy(x_0,y_0)(y-y_0)
0
 
LVL 25

Expert Comment

by:InteractiveMind
ID: 24121388
"the tangent plane at (x_0, y_0) for a surface z=f(x,y)"
0

Featured Post

Free Tool: Path Explorer

An intuitive utility to help find the CSS path to UI elements on a webpage. These paths are used frequently in a variety of front-end development and QA automation tasks.

One of a set of tools we're offering as a way of saying thank you for being a part of the community.

Question has a verified solution.

If you are experiencing a similar issue, please ask a related question

Article by: Nicole
This is a research brief on the potential colonization of humans on Mars.
This article provides a brief introduction to tissue engineering, the process by which organs can be grown artificially. It covers the problems with organ transplants, the tissue engineering process, and the current successes and problems of the tec…
This is a video describing the growing solar energy use in Utah. This is a topic that greatly interests me and so I decided to produce a video about it.
Although Jacob Bernoulli (1654-1705) has been credited as the creator of "Binomial Distribution Table", Gottfried Leibniz (1646-1716) did his dissertation on the subject in 1666; Leibniz you may recall is the co-inventor of "Calculus" and beat Isaac…

734 members asked questions and received personalized solutions in the past 7 days.

Join the community of 500,000 technology professionals and ask your questions.

Join & Ask a Question