Solved

How many different combinations can be made from 5 varieties of flowers?

Posted on 2010-09-16
7
1,126 Views
Last Modified: 2012-05-10
If I have 5 different varieties of flowers:
carnations, roses, mums, marigolds and lilies.
And I put 3 different varieties of flowers in a vase
For example, a vase might contain roses, carnations and lilies
How many different combinations can be made from the 5 varieties of flowers?

0
Comment
Question by:zimmer9
  • 4
  • 2
7 Comments
 
LVL 11

Accepted Solution

by:
dougaug earned 500 total points
ID: 33697859
You can use combinatory analysis

Cx,y =   x!
          _________
          y! * (x - y)!

I

0
 
LVL 11

Expert Comment

by:dougaug
ID: 33697864
You can use combinatory analysis

Cx,y =   x!
          _________
          y! * (x - y)!


In you example:

C5,3 =        5!              =   120      =   120    = 120   = 10
            __________      _______     _____    ____
            3! * (5 - 3)!          6 * 2!        6 * 2       12
0
 
LVL 32

Expert Comment

by:phoffric
ID: 33697866
You want to pick 3 kinds of flowers out of 5. So that is:
5 things taken 3 at a time = 5 C 3 = 5!/[(5-3)!(3!)] = 5*4/2! = 20/2 = 10 combinations.
    http://www.mathwords.com/c/combination_formula.htm
    http://www.wolframalpha.com/input/?i=5+C+3
0
Free Tool: IP Lookup

Get more info about an IP address or domain name, such as organization, abuse contacts and geolocation.

One of a set of tools we are providing to everyone as a way of saying thank you for being a part of the community.

 

Author Comment

by:zimmer9
ID: 33697890
Does this equate to:

    5!                                     120
    --                                      ---        =  10
    3! * (5 - 3)!          =            6 * 2
0
 
LVL 32

Expert Comment

by:phoffric
ID: 33697912
Yes, same calculations as above.

Note that 5! = 5*4*3!
so that the 3! in the denominator cancels out with the 3! in the numerator, and then you have

5!
------------  = 5*4/2! = 20/2 = 10
3! * (5 - 3)!  
0
 
LVL 32

Expert Comment

by:phoffric
ID: 33697923
So, in general, taking R things out of N leads to this number of combinations:


     N!             N(N-1)...(N-R+1)(N-R)!
----------- = ------------------------------- = N(N-1)...(N-R+1)/R!
R!( N-R )!                          R!( N-R )!

Here the (N-R)! factor in the numerator cancels with the same factor in the denominator.
0
 
LVL 32

Expert Comment

by:phoffric
ID: 33697937
Here is the general form that I used with the concrete numbers:


     N!             N(N-1)...(R+1)(R)!
----------- = -------------------------- = N(N-1)...(R+1)/( N-R )!
R!( N-R )!                     R!( N-R )!

Here the R! factor in the numerator cancels with the same factor in the denominator.
0

Featured Post

Free Tool: SSL Checker

Scans your site and returns information about your SSL implementation and certificate. Helpful for debugging and validating your SSL configuration.

One of a set of tools we are providing to everyone as a way of saying thank you for being a part of the community.

Question has a verified solution.

If you are experiencing a similar issue, please ask a related question

Suggested Solutions

Title # Comments Views Activity
Statistics & Data Sceicne 2 133
Graph function 4 90
Homework Help 5 95
Properties of numbers 14 57
Introduction On a scale of 1 to 10, how would you rate our Product? Many of us have answered that question time and time again. But only a few of us have had the pleasure of receiving a stack of the filled out surveys and being asked to do somethi…
This article provides a brief introduction to tissue engineering, the process by which organs can be grown artificially. It covers the problems with organ transplants, the tissue engineering process, and the current successes and problems of the tec…
This is a video describing the growing solar energy use in Utah. This is a topic that greatly interests me and so I decided to produce a video about it.
Although Jacob Bernoulli (1654-1705) has been credited as the creator of "Binomial Distribution Table", Gottfried Leibniz (1646-1716) did his dissertation on the subject in 1666; Leibniz you may recall is the co-inventor of "Calculus" and beat Isaac…

809 members asked questions and received personalized solutions in the past 7 days.

Join the community of 500,000 technology professionals and ask your questions.

Join & Ask a Question