Evenly divisible

Read question. Is my answer correct? a

(123^121+121^123) mod 122= ((122+1)^121) mod 122+ ((122-1)^123)mod 122= (1^121) mod 122 +((-1)^123) mod 122 = 1 mod 122+ (-1) mod 122= (1-1) mod 122 =0
MickeysAsked:
Who is Participating?

Improve company productivity with a Business Account.Sign Up

x
 
TommySzalapskiConnect With a Mentor Commented:
(123^121+121^123) mod 122
= ((122+1)^121) mod 122+ ((122-1)^123)mod 122  ----- simple arithmetic
= (1^121) mod 122 +((-1)^123) mod 122 ----- a^k % n = (a%n)^k
= 1 mod 122+ (-1) mod 122 ------ simple algebra
= (1-1) mod 122 --------- (a+b) % n = a%n + b%n
=0 --------- simple arithmetic and 0 mod a = 0 (where a not= 0)
0
 
phoffricCommented:
Where % ~ mod, it looks like you are using these principles:
aa % n = (a % n) (a % n)
a^k % n = (a%n)^k
(a+b) % n = a%n + b%n
More generally, you could write:
(n+1)^(n-1)  % n = [ (n+1) % n ] ^ (n-1) = [ n % n +1 % n ] ^ (n-1) = [ 0 + 1 ] ^ (n-1) = 1
(n-1)^(n+1)  % n = [ (n-1) % n ] ^ (n+1) = [ n % n - 1 % n ] ^ (n+1) = [ 0 - 1 ] ^ (n+1) = -1
0
 
MickeysAuthor Commented:
So to get the correct answer. Would I use this
(123^121+121^123) mod 122= ((122+1)^121) mod 122+ ((122-1)^123)mod 122= (1^121) mod 122 +((-1)^123) mod 122 = 1 mod 122+ (-1) mod 122= (1-1) mod 122 =0

or this?
(n+1)^(n-1)  % n = [ (n+1) % n ] ^ (n-1) = [ n % n +1 % n ] ^ (n-1) = [ 0 + 1 ] ^ (n-1) = 1
(n-1)^(n+1)  % n = [ (n-1) % n ] ^ (n+1) = [ n % n - 1 % n ] ^ (n+1) = [ 0 - 1 ] ^ (n+1) = -1

0
What Kind of Coding Program is Right for You?

There are many ways to learn to code these days. From coding bootcamps like Flatiron School to online courses to totally free beginner resources. The best way to learn to code depends on many factors, but the most important one is you. See what course is best for you.

 
phoffricCommented:
I prefer symbols, but you can choose the approach you feel more comfortable with.

Let n = 122, then
(n+1)^(n-1)  % n = (122+1)^(122-1)  % 122 = (123^121) mod 122

and
(n-1)^(n+1)  % n = (122-1)^(122+1)  % 122 = (121^123) mod 122

Can you make the final conclusions from this substitution by comparing it with your OP?
0
 
MickeysAuthor Commented:
no :-(
0
 
phoffricCommented:
>> no :-(
Could you elaborate?
For example, what part of the substitution are you having trouble with?
0
 
MickeysAuthor Commented:
well all I really wanted to know was if my solution was correct
0
 
TommySzalapskiCommented:
Yes.
0
 
phoffricConnect With a Mentor Commented:
Ok, let me check by using n=122 for your solution...

I checked it, and your solution is correct. However, I recommend adding extra steps.




0
 
TommySzalapskiCommented:
These are your steps with the justifications. Looks complete to me.
0
 
TommySzalapskiCommented:
Oh, that first step also used (a+b) % n = a%n + b%n
0
Question has a verified solution.

Are you are experiencing a similar issue? Get a personalized answer when you ask a related question.

Have a better answer? Share it in a comment.

All Courses

From novice to tech pro — start learning today.