Solved

Evenly divisible

Posted on 2010-11-30
11
328 Views
Last Modified: 2012-05-10
Read question. Is my answer correct? a

(123^121+121^123) mod 122= ((122+1)^121) mod 122+ ((122-1)^123)mod 122= (1^121) mod 122 +((-1)^123) mod 122 = 1 mod 122+ (-1) mod 122= (1-1) mod 122 =0
0
Comment
Question by:Mickeys
  • 4
  • 4
  • 3
11 Comments
 
LVL 32

Expert Comment

by:phoffric
ID: 34242672
Where % ~ mod, it looks like you are using these principles:
aa % n = (a % n) (a % n)
a^k % n = (a%n)^k
(a+b) % n = a%n + b%n
More generally, you could write:
(n+1)^(n-1)  % n = [ (n+1) % n ] ^ (n-1) = [ n % n +1 % n ] ^ (n-1) = [ 0 + 1 ] ^ (n-1) = 1
(n-1)^(n+1)  % n = [ (n-1) % n ] ^ (n+1) = [ n % n - 1 % n ] ^ (n+1) = [ 0 - 1 ] ^ (n+1) = -1
0
 

Author Comment

by:Mickeys
ID: 34242725
So to get the correct answer. Would I use this
(123^121+121^123) mod 122= ((122+1)^121) mod 122+ ((122-1)^123)mod 122= (1^121) mod 122 +((-1)^123) mod 122 = 1 mod 122+ (-1) mod 122= (1-1) mod 122 =0

or this?
(n+1)^(n-1)  % n = [ (n+1) % n ] ^ (n-1) = [ n % n +1 % n ] ^ (n-1) = [ 0 + 1 ] ^ (n-1) = 1
(n-1)^(n+1)  % n = [ (n-1) % n ] ^ (n+1) = [ n % n - 1 % n ] ^ (n+1) = [ 0 - 1 ] ^ (n+1) = -1

0
 
LVL 32

Expert Comment

by:phoffric
ID: 34242841
I prefer symbols, but you can choose the approach you feel more comfortable with.

Let n = 122, then
(n+1)^(n-1)  % n = (122+1)^(122-1)  % 122 = (123^121) mod 122

and
(n-1)^(n+1)  % n = (122-1)^(122+1)  % 122 = (121^123) mod 122

Can you make the final conclusions from this substitution by comparing it with your OP?
0
 

Author Comment

by:Mickeys
ID: 34242929
no :-(
0
 
LVL 32

Expert Comment

by:phoffric
ID: 34242945
>> no :-(
Could you elaborate?
For example, what part of the substitution are you having trouble with?
0
Is Your Active Directory as Secure as You Think?

More than 75% of all records are compromised because of the loss or theft of a privileged credential. Experts have been exploring Active Directory infrastructure to identify key threats and establish best practices for keeping data safe. Attend this month’s webinar to learn more.

 

Author Comment

by:Mickeys
ID: 34243036
well all I really wanted to know was if my solution was correct
0
 
LVL 37

Expert Comment

by:TommySzalapski
ID: 34243258
Yes.
0
 
LVL 32

Assisted Solution

by:phoffric
phoffric earned 250 total points
ID: 34243284
Ok, let me check by using n=122 for your solution...

I checked it, and your solution is correct. However, I recommend adding extra steps.




0
 
LVL 37

Accepted Solution

by:
TommySzalapski earned 250 total points
ID: 34243292
(123^121+121^123) mod 122
= ((122+1)^121) mod 122+ ((122-1)^123)mod 122  ----- simple arithmetic
= (1^121) mod 122 +((-1)^123) mod 122 ----- a^k % n = (a%n)^k
= 1 mod 122+ (-1) mod 122 ------ simple algebra
= (1-1) mod 122 --------- (a+b) % n = a%n + b%n
=0 --------- simple arithmetic and 0 mod a = 0 (where a not= 0)
0
 
LVL 37

Expert Comment

by:TommySzalapski
ID: 34243301
These are your steps with the justifications. Looks complete to me.
0
 
LVL 37

Expert Comment

by:TommySzalapski
ID: 34243324
Oh, that first step also used (a+b) % n = a%n + b%n
0

Featured Post

Is Your Active Directory as Secure as You Think?

More than 75% of all records are compromised because of the loss or theft of a privileged credential. Experts have been exploring Active Directory infrastructure to identify key threats and establish best practices for keeping data safe. Attend this month’s webinar to learn more.

Question has a verified solution.

If you are experiencing a similar issue, please ask a related question

Suggested Solutions

Title # Comments Views Activity
How to solve a trigonometry equation 6 86
Probability Calculation 2 54
Least Squares Curve Fitting 4 57
How to access ANSI/IEEE Std 754 or equivalent information ? 3 43
Introduction On a scale of 1 to 10, how would you rate our Product? Many of us have answered that question time and time again. But only a few of us have had the pleasure of receiving a stack of the filled out surveys and being asked to do somethi…
Foreword (May 2015) This web page has appeared at Google.  It's definitely worth considering! https://www.google.com/about/careers/students/guide-to-technical-development.html How to Know You are Making a Difference at EE In August, 2013, one …
This is a video describing the growing solar energy use in Utah. This is a topic that greatly interests me and so I decided to produce a video about it.
This is a video that shows how the OnPage alerts system integrates into ConnectWise, how a trigger is set, how a page is sent via the trigger, and how the SENT, DELIVERED, READ & REPLIED receipts get entered into the internal tab of the ConnectWise …

943 members asked questions and received personalized solutions in the past 7 days.

Join the community of 500,000 technology professionals and ask your questions.

Join & Ask a Question

Need Help in Real-Time?

Connect with top rated Experts

16 Experts available now in Live!

Get 1:1 Help Now