Solved

# Math: Number of possible combinations when sorted alphabetically

Posted on 2014-02-03
400 Views
I have 17 items:
ABCDEFGHIJKLMNOPQ
I am working on a project that combines PDF documents in order, and I need to know how many total options would be possible.

There can be any combination of them, providing each item can only appear in the list once and the results are always in alphabetical order.

For example these would all be valid,
ACB
ACE
BFJ

But these would not be valid:
BBB
BCA

How can the number of options be calculated?
0
Question by:hankknight
[X]
###### Welcome to Experts Exchange

Add your voice to the tech community where 5M+ people just like you are talking about what matters.

• Help others & share knowledge
• Earn cash & points

LVL 14

Assisted Solution

John-Charles-Herzberg earned 20 total points
ID: 39829948
Combinations without repetition (n=17, r=3)

List has 680 entries.
{a,b,c} {a,b,d} {a,b,e} {a,b,f} {a,b,g} {a,b,h} {a,b,i} {a,b,j} {a,b,k} {a,b,l} {a,b,m} {a,b,n} {a,b,o} {a,b,p} {a,b,q} {a,c,d} {a,c,e} {a,c,f} {a,c,g} {a,c,h} {a,c,i} {a,c,j} {a,c,k} {a,c,l} {a,c,m} {a,c,n} {a,c,o} {a,c,p} {a,c,q} {a,d,e} {a,d,f} {a,d,g} {a,d,h} {a,d,i} {a,d,j} {a,d,k} {a,d,l} {a,d,m} {a,d,n} {a,d,o} {a,d,p} {a,d,q} {a,e,f} {a,e,g} {a,e,h} {a,e,i} {a,e,j} {a,e,k} {a,e,l} {a,e,m} {a,e,n} {a,e,o} {a,e,p} {a,e,q} {a,f,g} {a,f,h} {a,f,i} {a,f,j} {a,f,k} {a,f,l} {a,f,m} {a,f,n} {a,f,o} {a,f,p} {a,f,q} {a,g,h} {a,g,i} {a,g,j} {a,g,k} {a,g,l} {a,g,m} {a,g,n} {a,g,o} {a,g,p} {a,g,q} {a,h,i} {a,h,j} {a,h,k} {a,h,l} {a,h,m} {a,h,n} {a,h,o} {a,h,p} {a,h,q} {a,i,j} {a,i,k} {a,i,l} {a,i,m} {a,i,n} {a,i,o} {a,i,p} {a,i,q} {a,j,k} {a,j,l} {a,j,m} {a,j,n} {a,j,o} {a,j,p} {a,j,q} {a,k,l} {a,k,m} {a,k,n} {a,k,o} {a,k,p} {a,k,q} {a,l,m} {a,l,n} {a,l,o} {a,l,p} {a,l,q} {a,m,n} {a,m,o} {a,m,p} {a,m,q} {a,n,o} {a,n,p} {a,n,q} {a,o,p} {a,o,q} {a,p,q} {b,c,d} {b,c,e} {b,c,f} {b,c,g} {b,c,h} {b,c,i} {b,c,j} {b,c,k} {b,c,l} {b,c,m} {b,c,n} {b,c,o} {b,c,p} {b,c,q} {b,d,e} {b,d,f} {b,d,g} {b,d,h} {b,d,i} {b,d,j} {b,d,k} {b,d,l} {b,d,m} {b,d,n} {b,d,o} {b,d,p} {b,d,q} {b,e,f} {b,e,g} {b,e,h} {b,e,i} {b,e,j} {b,e,k} {b,e,l} {b,e,m} {b,e,n} {b,e,o} {b,e,p} {b,e,q} {b,f,g} {b,f,h} {b,f,i} {b,f,j} {b,f,k} {b,f,l} {b,f,m} {b,f,n} {b,f,o} {b,f,p} {b,f,q} {b,g,h} {b,g,i} {b,g,j} {b,g,k} {b,g,l} {b,g,m} {b,g,n} {b,g,o} {b,g,p} {b,g,q} {b,h,i} {b,h,j} {b,h,k} {b,h,l} {b,h,m} {b,h,n} {b,h,o} {b,h,p} {b,h,q} {b,i,j} {b,i,k} {b,i,l} {b,i,m} {b,i,n} {b,i,o} {b,i,p} {b,i,q} {b,j,k} {b,j,l} {b,j,m} {b,j,n} {b,j,o} {b,j,p} {b,j,q} {b,k,l} {b,k,m} {b,k,n} {b,k,o} {b,k,p} {b,k,q} {b,l,m} {b,l,n} {b,l,o} {b,l,p} {b,l,q} {b,m,n} {b,m,o} {b,m,p} {b,m,q} {b,n,o} {b,n,p} {b,n,q} {b,o,p} {b,o,q} {b,p,q} {c,d,e} {c,d,f} {c,d,g} {c,d,h} {c,d,i} {c,d,j} {c,d,k} {c,d,l} {c,d,m} {c,d,n} {c,d,o} {c,d,p} {c,d,q} {c,e,f} {c,e,g} {c,e,h} {c,e,i} {c,e,j} {c,e,k} {c,e,l} {c,e,m} {c,e,n} {c,e,o} {c,e,p} {c,e,q} {c,f,g} {c,f,h} {c,f,i} {c,f,j} {c,f,k} {c,f,l} {c,f,m} {c,f,n} {c,f,o} {c,f,p} {c,f,q} {c,g,h} {c,g,i} {c,g,j} {c,g,k} {c,g,l} {c,g,m} {c,g,n} {c,g,o} {c,g,p} {c,g,q} {c,h,i} {c,h,j} {c,h,k} {c,h,l} {c,h,m} {c,h,n} {c,h,o} {c,h,p} {c,h,q} {c,i,j} {c,i,k} {c,i,l} {c,i,m} {c,i,n} {c,i,o} {c,i,p} {c,i,q} {c,j,k} {c,j,l} {c,j,m} {c,j,n} {c,j,o} {c,j,p} {c,j,q} {c,k,l} {c,k,m} {c,k,n} {c,k,o} {c,k,p} {c,k,q} {c,l,m} {c,l,n} {c,l,o} {c,l,p} {c,l,q} {c,m,n} {c,m,o} {c,m,p} {c,m,q} {c,n,o} {c,n,p} {c,n,q} {c,o,p} {c,o,q} {c,p,q} {d,e,f} {d,e,g} {d,e,h} {d,e,i} {d,e,j} {d,e,k} {d,e,l} {d,e,m} {d,e,n} {d,e,o} {d,e,p} {d,e,q} {d,f,g} {d,f,h} {d,f,i} {d,f,j} {d,f,k} {d,f,l} {d,f,m} {d,f,n} {d,f,o} {d,f,p} {d,f,q} {d,g,h} {d,g,i} {d,g,j} {d,g,k} {d,g,l} {d,g,m} {d,g,n} {d,g,o} {d,g,p} {d,g,q} {d,h,i} {d,h,j} {d,h,k} {d,h,l} {d,h,m} {d,h,n} {d,h,o} {d,h,p} {d,h,q} {d,i,j} {d,i,k} {d,i,l} {d,i,m} {d,i,n} {d,i,o} {d,i,p} {d,i,q} {d,j,k} {d,j,l} {d,j,m} {d,j,n} {d,j,o} {d,j,p} {d,j,q} {d,k,l} {d,k,m} {d,k,n} {d,k,o} {d,k,p} {d,k,q} {d,l,m} {d,l,n} {d,l,o} {d,l,p} {d,l,q} {d,m,n} {d,m,o} {d,m,p} {d,m,q} {d,n,o} {d,n,p} {d,n,q} {d,o,p} {d,o,q} {d,p,q} {e,f,g} {e,f,h} {e,f,i} {e,f,j} {e,f,k} {e,f,l} {e,f,m} {e,f,n} {e,f,o} {e,f,p} {e,f,q} {e,g,h} {e,g,i} {e,g,j} {e,g,k} {e,g,l} {e,g,m} {e,g,n} {e,g,o} {e,g,p} {e,g,q} {e,h,i} {e,h,j} {e,h,k} {e,h,l} {e,h,m} {e,h,n} {e,h,o} {e,h,p} {e,h,q} {e,i,j} {e,i,k} {e,i,l} {e,i,m} {e,i,n} {e,i,o} {e,i,p} {e,i,q} {e,j,k} {e,j,l} {e,j,m} {e,j,n} {e,j,o} {e,j,p} {e,j,q} {e,k,l} {e,k,m} {e,k,n} {e,k,o} {e,k,p} {e,k,q} {e,l,m} {e,l,n} {e,l,o} {e,l,p} {e,l,q} {e,m,n} {e,m,o} {e,m,p} {e,m,q} {e,n,o} {e,n,p} {e,n,q} {e,o,p} {e,o,q} {e,p,q} {f,g,h} {f,g,i} {f,g,j} {f,g,k} {f,g,l} {f,g,m} {f,g,n} {f,g,o} {f,g,p} {f,g,q} {f,h,i} {f,h,j} {f,h,k} {f,h,l} {f,h,m} {f,h,n} {f,h,o} {f,h,p} {f,h,q} {f,i,j} {f,i,k} {f,i,l} {f,i,m} {f,i,n} {f,i,o} {f,i,p} {f,i,q} {f,j,k} {f,j,l} {f,j,m} {f,j,n} {f,j,o} {f,j,p} {f,j,q} {f,k,l} {f,k,m} {f,k,n} {f,k,o} {f,k,p} {f,k,q} {f,l,m} {f,l,n} {f,l,o} {f,l,p} {f,l,q} {f,m,n} {f,m,o} {f,m,p} {f,m,q} {f,n,o} {f,n,p} {f,n,q} {f,o,p} {f,o,q} {f,p,q} {g,h,i} {g,h,j} {g,h,k} {g,h,l} {g,h,m} {g,h,n} {g,h,o} {g,h,p} {g,h,q} {g,i,j} {g,i,k} {g,i,l} {g,i,m} {g,i,n} {g,i,o} {g,i,p} {g,i,q} {g,j,k} {g,j,l} {g,j,m} {g,j,n} {g,j,o} {g,j,p} {g,j,q} {g,k,l} {g,k,m} {g,k,n} {g,k,o} {g,k,p} {g,k,q} {g,l,m} {g,l,n} {g,l,o} {g,l,p} {g,l,q} {g,m,n} {g,m,o} {g,m,p} {g,m,q} {g,n,o} {g,n,p} {g,n,q} {g,o,p} {g,o,q} {g,p,q} {h,i,j} {h,i,k} {h,i,l} {h,i,m} {h,i,n} {h,i,o} {h,i,p} {h,i,q} {h,j,k} {h,j,l} {h,j,m} {h,j,n} {h,j,o} {h,j,p} {h,j,q} {h,k,l} {h,k,m} {h,k,n} {h,k,o} {h,k,p} {h,k,q} {h,l,m} {h,l,n} {h,l,o} {h,l,p} {h,l,q} {h,m,n} {h,m,o} {h,m,p} {h,m,q} {h,n,o} {h,n,p} {h,n,q} {h,o,p} {h,o,q} {h,p,q} {i,j,k} {i,j,l} {i,j,m} {i,j,n} {i,j,o} {i,j,p} {i,j,q} {i,k,l} {i,k,m} {i,k,n} {i,k,o} {i,k,p} {i,k,q} {i,l,m} {i,l,n} {i,l,o} {i,l,p} {i,l,q} {i,m,n} {i,m,o} {i,m,p} {i,m,q} {i,n,o} {i,n,p} {i,n,q} {i,o,p} {i,o,q} {i,p,q} {j,k,l} {j,k,m} {j,k,n} {j,k,o} {j,k,p} {j,k,q} {j,l,m} {j,l,n} {j,l,o} {j,l,p} {j,l,q} {j,m,n} {j,m,o} {j,m,p} {j,m,q} {j,n,o} {j,n,p} {j,n,q} {j,o,p} {j,o,q} {j,p,q} {k,l,m} {k,l,n} {k,l,o} {k,l,p} {k,l,q} {k,m,n} {k,m,o} {k,m,p} {k,m,q} {k,n,o} {k,n,p} {k,n,q} {k,o,p} {k,o,q} {k,p,q} {l,m,n} {l,m,o} {l,m,p} {l,m,q} {l,n,o} {l,n,p} {l,n,q} {l,o,p} {l,o,q} {l,p,q} {m,n,o} {m,n,p} {m,n,q} {m,o,p} {m,o,q} {m,p,q} {n,o,p} {n,o,q} {n,p,q} {o,p,q}

Combinations and Permutations Calculator

http://www.mathsisfun.com/combinatorics/combinations-permutations-calculator.html

Thanks
JC
0

LVL 84

Assisted Solution

ozo earned 20 total points
ID: 39829985
17!/(17-3)!/3!
0

LVL 32

Accepted Solution

phoffric earned 360 total points
ID: 39830000
>> the results are always in alphabetical order.
>> ACB
Why is this allowed? Shouldn't it be ABC?

If you want options that are larger than 3 (or even 2, or just 1), then the total number of options is 2^17 less 1. To see why, take a binary word that is 17 bits long. If you select ABDE, then that could map to:
11011000000000000

To select all options, you would select all possibilities of 1's and 0's. There are 2^17 such possibilities. One of those possibilities is all 0's which means none are selected. That is why the total number of options is 2^17 less 1.
0

LVL 37

Assisted Solution

TommySzalapski earned 100 total points
ID: 39830004
Are you always selecting three?
If you can select any number, than the total possible combinations is
2^17 (which includes the case where you select none and the one where you select all)
So valid cases
[blank]
A
B
AB
ACDG
GHPQ
ABCDEFGHIJKLMNOPQ
etc

Oops phoffric beat me to the punch.
0

LVL 16

Author Comment

ID: 39830028
Thank you-- 2 to the power of 17 minus one is the answer I was looking for.
0

## Featured Post

Question has a verified solution.

If you are experiencing a similar issue, please ask a related question

### Suggested Solutions

JavaScript can be used in a browser to change parts of a webpage dynamically. It begins with the following pattern: If condition W is true, do thing X to target Y after event Z. Below are some tips and tricks to help you get started with JavaScript …
Today, the web development industry is booming, and many people consider it to be their vocation. The question you may be asking yourself is – how do I become a web developer?
The viewer will learn the basics of jQuery, including how to invoke it on a web page. Reference your jQuery libraries: (CODE) Include your new external js/jQuery file: (CODE) Write your first lines of code to setup your site for jQuery.: (CODE)
Finds all prime numbers in a range requested and places them in a public primes() array. I've demostrated a template size of 30 (2 * 3 * 5) but larger templates can be built such 210  (2 * 3 * 5 * 7) or 2310  (2 * 3 * 5 * 7 * 11). The larger templa…
###### Suggested Courses
Course of the Month3 days, 13 hours left to enroll