Solved

How do I execute this Python code in Anaconda console?

Posted on 2014-07-21
1
734 Views
Last Modified: 2014-07-25
How do I execute this Python code in Anaconda console?

"""
Description     : Simple Python implementation of the Apriori Algorithm

Usage:
    $python apriori.py -f DATASET.csv -s minSupport  -c minConfidence

    $python apriori.py -f DATASET.csv -s 0.15 -c 0.6
"""

import sys

from itertools import chain, combinations
from collections import defaultdict
from optparse import OptionParser


def subsets(arr):
    """ Returns non empty subsets of arr"""
    return chain(*[combinations(arr, i + 1) for i, a in enumerate(arr)])


def returnItemsWithMinSupport(itemSet, transactionList, minSupport, freqSet):
        """calculates the support for items in the itemSet and returns a subset
       of the itemSet each of whose elements satisfies the minimum support"""
        _itemSet = set()
        localSet = defaultdict(int)

        for item in itemSet:
                for transaction in transactionList:
                        if item.issubset(transaction):
                                freqSet[item] += 1
                                localSet[item] += 1

        for item, count in localSet.items():
                support = float(count)/len(transactionList)

                if support >= minSupport:
                        _itemSet.add(item)

        return _itemSet


def joinSet(itemSet, length):
        """Join a set with itself and returns the n-element itemsets"""
        return set([i.union(j) for i in itemSet for j in itemSet if len(i.union(j)) == length])


def getItemSetTransactionList(data_iterator):
    transactionList = list()
    itemSet = set()
    for record in data_iterator:
        transaction = frozenset(record)
        transactionList.append(transaction)
        for item in transaction:
            itemSet.add(frozenset([item]))              # Generate 1-itemSets
    return itemSet, transactionList


def runApriori(data_iter, minSupport, minConfidence):
    """
    run the apriori algorithm. data_iter is a record iterator
    Return both:
     - items (tuple, support)
     - rules ((pretuple, posttuple), confidence)
    """
    itemSet, transactionList = getItemSetTransactionList(data_iter)

    freqSet = defaultdict(int)
    largeSet = dict()
    # Global dictionary which stores (key=n-itemSets,value=support)
    # which satisfy minSupport

    assocRules = dict()
    # Dictionary which stores Association Rules

    oneCSet = returnItemsWithMinSupport(itemSet,
                                        transactionList,
                                        minSupport,
                                        freqSet)

    currentLSet = oneCSet
    k = 2
    while(currentLSet != set([])):
        largeSet[k-1] = currentLSet
        currentLSet = joinSet(currentLSet, k)
        currentCSet = returnItemsWithMinSupport(currentLSet,
                                                transactionList,
                                                minSupport,
                                                freqSet)
        currentLSet = currentCSet
        k = k + 1

    def getSupport(item):
            """local function which Returns the support of an item"""
            return float(freqSet[item])/len(transactionList)

    toRetItems = []
    for key, value in largeSet.items():
        toRetItems.extend([(tuple(item), getSupport(item))
                           for item in value])

    toRetRules = []
    for key, value in largeSet.items()[1:]:
        for item in value:
            _subsets = map(frozenset, [x for x in subsets(item)])
            for element in _subsets:
                remain = item.difference(element)
                if len(remain) > 0:
                    confidence = getSupport(item)/getSupport(element)
                    if confidence >= minConfidence:
                        toRetRules.append(((tuple(element), tuple(remain)),
                                           confidence))
    return toRetItems, toRetRules


def printResults(items, rules):
    """prints the generated itemsets and the confidence rules"""
    for item, support in items:
        print "item: %s , %.3f" % (str(item), support)
    print "\n------------------------ RULES:"
    for rule, confidence in rules:
        pre, post = rule
        print "Rule: %s ==> %s , %.3f" % (str(pre), str(post), confidence)


def dataFromFile(fname):
        """Function which reads from the file and yields a generator"""
        file_iter = open(fname, 'rU')
        for line in file_iter:
                line = line.strip().rstrip(',')                         # Remove trailing comma
                record = frozenset(line.split(','))
                yield record


if __name__ == "__main__":

    optparser = OptionParser()
    optparser.add_option('-f', '--inputFile',
                         dest='input',
                         help='filename containing csv',
                         default=None)
    optparser.add_option('-s', '--minSupport',
                         dest='minS',
                         help='minimum support value',
                         default=0.15,
                         type='float')
    optparser.add_option('-c', '--minConfidence',
                         dest='minC',
                         help='minimum confidence value',
                         default=0.6,
                         type='float')

    (options, args) = optparser.parse_args()

    inFile = None
    if options.input is None:
            inFile = sys.stdin
    elif options.input is not None:
            inFile = dataFromFile(options.input)
    else:
            print 'No dataset filename specified, system with exit\n'
            sys.exit('System will exit')

    minSupport = options.minS
    minConfidence = options.minC

    items, rules = runApriori(inFile, minSupport, minConfidence)

    printResults(items, rules)
apriori.py
0
Comment
Question by:Ricky Ng
[X]
Welcome to Experts Exchange

Add your voice to the tech community where 5M+ people just like you are talking about what matters.

  • Help others & share knowledge
  • Earn cash & points
  • Learn & ask questions
1 Comment
 
LVL 5

Accepted Solution

by:
Pasha Kravtsov earned 500 total points
ID: 40211858
I'm not sure what you mean by the Anaconda console but I'm going to assume you mean python command line.

Windows:
Open the start menu
Search for "Python"
Double click on Python (Command line)
Now copy and paste your code in
Press enter

Linux:
Open up a terminal
Type "python2" or "python"
Copy paste code and press enter
0

Featured Post

Announcing the Most Valuable Experts of 2016

MVEs are more concerned with the satisfaction of those they help than with the considerable points they can earn. They are the types of people you feel privileged to call colleagues. Join us in honoring this amazing group of Experts.

Question has a verified solution.

If you are experiencing a similar issue, please ask a related question

Suggested Solutions

Installing Python 2.7.3 version on Windows operating system For installing Python first we need to download Python's latest version from URL" www.python.org " You can also get information on Python scripting language from the above mentioned we…
This article will show the steps for installing Python on Ubuntu Operating System. I have created a virtual machine with Ubuntu Operating system 8.10 and this installing process also works with upgraded version of Ubuntu OS. For installing Py…
Learn the basics of modules and packages in Python. Every Python file is a module, ending in the suffix: .py: Modules are a collection of functions and variables.: Packages are a collection of modules.: Module functions and variables are accessed us…
Learn the basics of while and for loops in Python.  while loops are used for testing while, or until, a condition is met: The structure of a while loop is as follows:     while <condition>:         do something         repeate: The break statement m…

756 members asked questions and received personalized solutions in the past 7 days.

Join the community of 500,000 technology professionals and ask your questions.

Join & Ask a Question