Go Premium for a chance to win a PS4. Enter to Win

x
  • Status: Solved
  • Priority: Medium
  • Security: Public
  • Views: 912
  • Last Modified:

How do I execute this Python code in Anaconda console?

How do I execute this Python code in Anaconda console?

"""
Description     : Simple Python implementation of the Apriori Algorithm

Usage:
    $python apriori.py -f DATASET.csv -s minSupport  -c minConfidence

    $python apriori.py -f DATASET.csv -s 0.15 -c 0.6
"""

import sys

from itertools import chain, combinations
from collections import defaultdict
from optparse import OptionParser


def subsets(arr):
    """ Returns non empty subsets of arr"""
    return chain(*[combinations(arr, i + 1) for i, a in enumerate(arr)])


def returnItemsWithMinSupport(itemSet, transactionList, minSupport, freqSet):
        """calculates the support for items in the itemSet and returns a subset
       of the itemSet each of whose elements satisfies the minimum support"""
        _itemSet = set()
        localSet = defaultdict(int)

        for item in itemSet:
                for transaction in transactionList:
                        if item.issubset(transaction):
                                freqSet[item] += 1
                                localSet[item] += 1

        for item, count in localSet.items():
                support = float(count)/len(transactionList)

                if support >= minSupport:
                        _itemSet.add(item)

        return _itemSet


def joinSet(itemSet, length):
        """Join a set with itself and returns the n-element itemsets"""
        return set([i.union(j) for i in itemSet for j in itemSet if len(i.union(j)) == length])


def getItemSetTransactionList(data_iterator):
    transactionList = list()
    itemSet = set()
    for record in data_iterator:
        transaction = frozenset(record)
        transactionList.append(transaction)
        for item in transaction:
            itemSet.add(frozenset([item]))              # Generate 1-itemSets
    return itemSet, transactionList


def runApriori(data_iter, minSupport, minConfidence):
    """
    run the apriori algorithm. data_iter is a record iterator
    Return both:
     - items (tuple, support)
     - rules ((pretuple, posttuple), confidence)
    """
    itemSet, transactionList = getItemSetTransactionList(data_iter)

    freqSet = defaultdict(int)
    largeSet = dict()
    # Global dictionary which stores (key=n-itemSets,value=support)
    # which satisfy minSupport

    assocRules = dict()
    # Dictionary which stores Association Rules

    oneCSet = returnItemsWithMinSupport(itemSet,
                                        transactionList,
                                        minSupport,
                                        freqSet)

    currentLSet = oneCSet
    k = 2
    while(currentLSet != set([])):
        largeSet[k-1] = currentLSet
        currentLSet = joinSet(currentLSet, k)
        currentCSet = returnItemsWithMinSupport(currentLSet,
                                                transactionList,
                                                minSupport,
                                                freqSet)
        currentLSet = currentCSet
        k = k + 1

    def getSupport(item):
            """local function which Returns the support of an item"""
            return float(freqSet[item])/len(transactionList)

    toRetItems = []
    for key, value in largeSet.items():
        toRetItems.extend([(tuple(item), getSupport(item))
                           for item in value])

    toRetRules = []
    for key, value in largeSet.items()[1:]:
        for item in value:
            _subsets = map(frozenset, [x for x in subsets(item)])
            for element in _subsets:
                remain = item.difference(element)
                if len(remain) > 0:
                    confidence = getSupport(item)/getSupport(element)
                    if confidence >= minConfidence:
                        toRetRules.append(((tuple(element), tuple(remain)),
                                           confidence))
    return toRetItems, toRetRules


def printResults(items, rules):
    """prints the generated itemsets and the confidence rules"""
    for item, support in items:
        print "item: %s , %.3f" % (str(item), support)
    print "\n------------------------ RULES:"
    for rule, confidence in rules:
        pre, post = rule
        print "Rule: %s ==> %s , %.3f" % (str(pre), str(post), confidence)


def dataFromFile(fname):
        """Function which reads from the file and yields a generator"""
        file_iter = open(fname, 'rU')
        for line in file_iter:
                line = line.strip().rstrip(',')                         # Remove trailing comma
                record = frozenset(line.split(','))
                yield record


if __name__ == "__main__":

    optparser = OptionParser()
    optparser.add_option('-f', '--inputFile',
                         dest='input',
                         help='filename containing csv',
                         default=None)
    optparser.add_option('-s', '--minSupport',
                         dest='minS',
                         help='minimum support value',
                         default=0.15,
                         type='float')
    optparser.add_option('-c', '--minConfidence',
                         dest='minC',
                         help='minimum confidence value',
                         default=0.6,
                         type='float')

    (options, args) = optparser.parse_args()

    inFile = None
    if options.input is None:
            inFile = sys.stdin
    elif options.input is not None:
            inFile = dataFromFile(options.input)
    else:
            print 'No dataset filename specified, system with exit\n'
            sys.exit('System will exit')

    minSupport = options.minS
    minConfidence = options.minC

    items, rules = runApriori(inFile, minSupport, minConfidence)

    printResults(items, rules)
apriori.py
0
Ricky Ng
Asked:
Ricky Ng
1 Solution
 
Pasha KravtsovCommented:
I'm not sure what you mean by the Anaconda console but I'm going to assume you mean python command line.

Windows:
Open the start menu
Search for "Python"
Double click on Python (Command line)
Now copy and paste your code in
Press enter

Linux:
Open up a terminal
Type "python2" or "python"
Copy paste code and press enter
0

Featured Post

Ask an Anonymous Question!

Don't feel intimidated by what you don't know. Ask your question anonymously. It's easy! Learn more and upgrade.

Tackle projects and never again get stuck behind a technical roadblock.
Join Now