Solved

Task on number theory

Posted on 2014-10-21
13
132 Views
Last Modified: 2014-12-20
Two factors
   Which the least number n can we imagine in product n = a∙b like k ways? Products a∙b and b∙a is one of the way, where all numbers is natural (1≤ k ≤50).

   Input
   One number k.
   Output
   One number n.

Could you describe the algorithms. I have one complicated algro using the first theorem of arithmetics, but it can't pass a few tests.
0
Comment
Question by:Nusrat Nuriyev
  • 8
  • 5
13 Comments
 
LVL 84

Expert Comment

by:ozo
ID: 40396219
If the prime factorization of  n is
p_0^a_0 * p_1^a_1 * ... * p_n^a_n
then the number of ways to write it as n = a∙b, where a∙b and b∙a are the same, would be
ceiling( (a_0+1)*(a_1+1)*...*(a_n+1) / 2 )
0
 
LVL 84

Expert Comment

by:ozo
ID: 40396352
So the least n for 1≤ k ≤50 seem to be
k           n
1(1)      1=()
2(3)      4=(2^(3-1))
3(6)      12=(2^(3-1)*3^(2-1))
4(8)      24=(2^(4-1)*3^(2-1))
5(9)      36=(2^(3-1)*3^(3-1))
6(12)      60=(2^(3-1)*3^(2-1)*5^(2-1))
7(14)      192=(2^(7-1)*3^(2-1))
8(16)      120=(2^(4-1)*3^(2-1)*5^(2-1))
9(18)      180=(2^(3-1)*3^(3-1)*5^(2-1))
10(20)      240=(2^(5-1)*3^(2-1)*5^(2-1))
11(21)      576=(2^(7-1)*3^(3-1))
12(24)      360=(2^(4-1)*3^(3-1)*5^(2-1))
13(25)      1296=(2^(5-1)*3^(5-1))
14(27)      900=(2^(3-1)*3^(3-1)*5^(3-1))
15(30)      720=(2^(5-1)*3^(3-1)*5^(2-1))
16(32)      840=(2^(4-1)*3^(2-1)*5^(2-1)*7^(2-1))
17(33)      9216=(2^(11-1)*3^(3-1))
18(36)      1260=(2^(3-1)*3^(3-1)*5^(2-1)*7^(2-1))
19(38)      786432=(2^(19-1)*3^(2-1))
20(40)      1680=(2^(5-1)*3^(2-1)*5^(2-1)*7^(2-1))
21(42)      2880=(2^(7-1)*3^(3-1)*5^(2-1))
22(44)      15360=(2^(11-1)*3^(2-1)*5^(2-1))
23(45)      3600=(2^(5-1)*3^(3-1)*5^(3-1))
24(48)      2520=(2^(4-1)*3^(3-1)*5^(2-1)*7^(2-1))
25(50)      6480=(2^(5-1)*3^(5-1)*5^(2-1))
26(52)      61440=(2^(13-1)*3^(2-1)*5^(2-1))
27(54)      6300=(2^(3-1)*3^(3-1)*5^(3-1)*7^(2-1))
28(56)      6720=(2^(7-1)*3^(2-1)*5^(2-1)*7^(2-1))
29(57)      2359296=(2^(19-1)*3^(3-1))
30(60)      5040=(2^(5-1)*3^(3-1)*5^(2-1)*7^(2-1))
31(62)      3221225472=(2^(31-1)*3^(2-1))
32(64)      7560=(2^(4-1)*3^(4-1)*5^(2-1)*7^(2-1))
33(66)      46080=(2^(11-1)*3^(3-1)*5^(2-1))
34(68)      983040=(2^(17-1)*3^(2-1)*5^(2-1))
35(70)      25920=(2^(7-1)*3^(5-1)*5^(2-1))
36(72)      12600=(2^(4-1)*3^(3-1)*5^(3-1)*7^(2-1))
37(74)      206158430208=(2^(37-1)*3^(2-1))
38(75)      32400=(2^(5-1)*3^(5-1)*5^(3-1))
39(78)      184320=(2^(13-1)*3^(3-1)*5^(2-1))
40(80)      15120=(2^(5-1)*3^(4-1)*5^(2-1)*7^(2-1))
41(81)      44100=(2^(3-1)*3^(3-1)*5^(3-1)*7^(3-1))
42(84)      20160=(2^(7-1)*3^(3-1)*5^(2-1)*7^(2-1))
43(85)      5308416=(2^(17-1)*3^(5-1))
44(88)      107520=(2^(11-1)*3^(2-1)*5^(2-1)*7^(2-1))
45(90)      25200=(2^(5-1)*3^(3-1)*5^(3-1)*7^(2-1))
46(91)      2985984=(2^(13-1)*3^(7-1))
47(93)      9663676416=(2^(31-1)*3^(3-1))
48(96)      27720=(2^(4-1)*3^(3-1)*5^(2-1)*7^(2-1)*11^(2-1))
49(98)      233280=(2^(7-1)*3^(7-1)*5^(2-1))
50(100)      45360=(2^(5-1)*3^(5-1)*5^(2-1)*7^(2-1))
0
 

Author Comment

by:Nusrat Nuriyev
ID: 40396568
okay , the main question is about
this:

4(8)      24=(2^(4-1)*3^(2-1))

why not this?
4(8)      X=(2^(2-1)*3^(2-1)*5^(2-1))
?
Even greater example.

8(16)      120=(2^(4-1)*3^(2-1)*5^(2-1))

why not
8(16)      120=(2^(2-1)*3^(4-1)*5^(2-1))

Or generally, the question:
Given a number:
66150
factorization:
2 3 3 3 5 5 7 7

How to generate this from the upper?
6 9 5 5 7 7

How to  generate all combinations?
0
 
LVL 84

Expert Comment

by:ozo
ID: 40397024
why not this?
4(8)      X=(2^(2-1)*3^(2-1)*5^(2-1))
Because 30 > 24, and you wanted "the least number n"

for 2 3 3 3 5 5 7 7, the  least number seems to be 2^(7-1)*3^(7-1)*5^(5-1)*7^(5-1)*11^(3-1)*13^(3-1)*17^(3-1)*19^(2-1)
0
 

Author Comment

by:Nusrat Nuriyev
ID: 40397200
I know, but how to get ALL that combinations to get the minimum?
how to generate all such combinations?
0
 
LVL 84

Expert Comment

by:ozo
ID: 40397263
At first I thought you only need to try combining the smallest factors, but in the case of 3 3 3 2 2
it turns out that 6 3 3 2 gives a smaller n than 4 3 3 3, so it looks like you have to try all combinations
0
Is Your Active Directory as Secure as You Think?

More than 75% of all records are compromised because of the loss or theft of a privileged credential. Experts have been exploring Active Directory infrastructure to identify key threats and establish best practices for keeping data safe. Attend this month’s webinar to learn more.

 
LVL 84

Expert Comment

by:ozo
ID: 40397299
So my earlier result can be improved with
36(72)      10080=(2^(6-1)*3^(3-1)*5^(2-1)*7^(2-1))
0
 

Author Comment

by:Nusrat Nuriyev
ID: 40448594
Still not clear how to generate all that combinations.
0
 
LVL 84

Expert Comment

by:ozo
ID: 40448994
#!/usr/bin/perl
use strict;
use warnings;
use POSIX;
use constant PRIME=>qw(2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 );
sub factors{
    my $n=shift;
    my @a;
    my $a=0;
    while( $n%2==0 ){ $n/=2; unshift @a,2; }
    my $p=3;
    while( $n>=$p*$p ){
	while( $n%$p == 0 ){ $n/=$p; unshift @a,$p; }
	$p+=2;
    }
    unshift @a,$n if $n!=1;
    return @a;
}

sub cmpp{
    my @p=@{+shift};
    my @q=@{+shift};
    push @p,(1)x($#q-$#p);
    push @q,(1)x($#p-$#q);
    my($p,$q)=(1,1);
    for( 0..$#p ){
	$p*=(PRIME)[$_]**($p[$_]-$q[$_]) if $p[$_]>$q[$_];
	$q*=(PRIME)[$_]**($q[$_]-$p[$_]) if $q[$_]>$p[$_];
    }
    if( $p==$q && $p == 'inf' ){ 
	print  "$p==$q (@p):(@q)\n";
        ($p,$q)=(0,0);
        for( 0..$#p ){
  	  $p+=log((PRIME)[$_])*($p[$_]-$q[$_]) if $p[$_]>$q[$_];
	   $q+=log((PRIME)[$_])*($q[$_]-$p[$_]) if $q[$_]>$p[$_];
        }
	print "exp($p)<=>exp($q)\n";
    }
    #die "$p==$q (@p):(@q)" if $p==$q;
    return $p<=>$q;
}
my %min;
sub minp{
    my @a=@_;
    my %p;
    my ($i,$j,$m);
    for( $i=0; $i<$#_ && 2**$_[$i] >= (PRIME)[$#_]**2; ++$i ){};
    if( my $aa=$min{$i,@_[$i..$#_]} ){
	@a=(@a[0..$i-1],@$aa);
    }else{
	my $i0=$i;
        for( ;$i<$#_; ++$i ){
	  for $j($i+1..$#_ ){
	    if( ($m=$_[$i]*$_[$j]) < 1000 && !$p{$m}++ ){
              my @aa=minp(sort{$b<=>$a}($m,@_[0..$i-1,$i+1..$j-1,$j+1..$#_]));
	      @a=@aa if cmpp(\@a,\@aa) >0;
            }
          }
	}
	$min{$i0,@_[$i0..$#_]}=[@a[$i0..$#a]];
    }
    return @a;
}
sub p{
    my $n=1;
    my $p="";
    for( reverse 0..$#_ ){
	my $m=$n*(PRIME)[$_]**($_[$_]-1);
	if( $m<'inf' ){
	    $n=$m;
	}else{
	    $p=(PRIME)[$_]."^".($_[$_]-1)."*$p";
        }
    }
    return $p.$n;
}

$"="*";
for my $k(1..5000){
    my @f0=minp(factors($k*2));
    my @f1=minp(factors($k*2-1));
    my $K=2*$k;
    ($K,@f0)=($K-1,@f1) if cmpp(\@f0,\@f1)>0;
    my $n0=p(@f0);
    my @f=map{(PRIME)[$_]."^($f0[$_]-1)"}0..$#f0;
    print "$k($K)\t$n0=(@f)\n";
}

Open in new window

0
 

Author Comment

by:Nusrat Nuriyev
ID: 40471611
I don't know perl enough. Could you post in C++?
0
 
LVL 84

Accepted Solution

by:
ozo earned 500 total points
ID: 40473141
// for simplicity, this C++ version omits the Dynamic Programming cache of subproblem results,  so it can get slow for large k
#include <iostream>
#include <set>
#include <map>
#include <math.h>   
using namespace std;
int PRIME[]={2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251};
multiset<int> factors(int n){
    multiset <int>a;
    while( n%2==0 ){ n/=2; a.insert(2); }
    int p=3;
    while( n>=p*p ){
	while( n%p == 0 ){ n/=p; a.insert(p); }
	p+=2;
    }
    if( n!=1 ){ a.insert(n); }
    return a;
}

int cmpp(multiset<int>p,multiset<int>q){
    while( p.size()<q.size() ){ p.insert(1); }
    while( q.size()<p.size() ){ q.insert(1); }
    double P=1;
    double Q=1;
    multiset<int>::reverse_iterator p_;
    multiset<int>::reverse_iterator q_;
    int _;
    for( _=0,p_=p.rbegin(),q_=q.rbegin(); p_!=p.rend()&&q_!=q.rend(); ++p_,++q_,++_ ){
        if( *p_>*q_ ){ P*=pow(PRIME[_],*p_-*q_); }
        if( *q_>*p_ ){ Q*=pow(PRIME[_],*q_-*p_); }

    }
    if( P== std::numeric_limits<double>::infinity() && Q== std::numeric_limits<double>::infinity() ){
        P=Q=0;
        for( _=0,p_=p.rbegin(),q_=q.rbegin(); p_!=p.rend()&&q_!=q.rend(); ++p_,++q_,++_ ){
            if( *p_>*q_ ){ P+=log(PRIME[_])*(*p_-*q_); }
            if( *q_>*p_ ){ Q+=log(PRIME[_])*(*q_-*p_); }
        }
    }
    return P<Q?-1:P>Q?1:0;
}
//map<mutiset<int>,multiset<int> > min;
multiset<int> minp(multiset<int>A){
    multiset<int>a=A;
    map<int,int>p;
    multiset<int>::reverse_iterator i;
    multiset<int>::reverse_iterator j;
    int m;
    for( i=A.rbegin();
         i!=A.rend() && pow(2,*i) > pow(PRIME[a.size()-1],2);
         ++i
    ){}
    //   
   for( ; i!=A.rend(); ++i ){
	for( j=i;++j!=A.rend(); ){
	    if( (m=*i * *j) < 1000 && !p[m]++ ){
                 multiset<int> t;
                 for( multiset<int>::reverse_iterator k=A.rbegin();k!=A.rend();++k ){
 		       if( k!= i && k!= j ){ t.insert(*k); }
                 }
                 t.insert(m);
                 multiset<int>aa=minp(t);
                 if( cmpp(a,aa) > 0 ){
                      a=aa;
                 }
             }
        }
    }
    //
    return a;
}
void print(multiset<int>P){
    double n=1;
    multiset<int>::reverse_iterator P_;
    int _;
    cout.precision(numeric_limits<double>::digits10);
    for( P_=P.rbegin(),_=0;P_!=P.rend(); ++P_,++_ ){
	double m=n*pow(PRIME[_],*P_-1);
	if( m< numeric_limits<double>::infinity() ){
	    n=m;
        }else{
	    cout << (PRIME)[_] << "^" << (*P_-1) << "*";
        }
    }
    cout << n;
}

int main(){
 for( int k=1; k<5000;++k ){
    multiset<int> f0=minp(factors(k*2));
    multiset<int> f1=minp(factors(k*2-1));
    int K=2*k;
    if( cmpp(f0,f1)>0 ){
       K=K-1;
       f0=f1;
    }
    cout << k << "(" << K << ")\t" ;
    print(f0);
    cout << "=(";
    int _=f0.size();
    for( auto f0_:f0 ){
      cout << PRIME[--_] << "^(" << f0_ << "-1)";
      if( _ > 0 ){ cout << "*"; }
    }
    cout << ")" << endl;
 }
}

Open in new window

0
 

Author Comment

by:Nusrat Nuriyev
ID: 40490121
Compiler says numeric_limits is undefined
Okay, never mind.
0
 
LVL 84

Assisted Solution

by:ozo
ozo earned 500 total points
ID: 40490335
numeric_limits should be part of std:: but maybe you need to include <limits>
Or you don't even really need to use numeric_limits, since <double>::digits10 only lets you see more digits of the result.
You can put any number there, and the full factorization is displayed anyway, so you still get a precise answer even when you don't cout all the digits.
And any number would also work in place of <double>::infinity.
In cmpp, it is used to fall back to a log compare when a direct comparison overflows, but even if you always do a log compare it should be sufficiently accurate and not horribly slow.
And in print it is just used to decide when you can only display factors because the value is too big to display directly,
but you may even prefer a factorized display before the value overflows a double.
0

Featured Post

Is Your Active Directory as Secure as You Think?

More than 75% of all records are compromised because of the loss or theft of a privileged credential. Experts have been exploring Active Directory infrastructure to identify key threats and establish best practices for keeping data safe. Attend this month’s webinar to learn more.

Question has a verified solution.

If you are experiencing a similar issue, please ask a related question

Article by: Nadia
Suppose you use Uber application as a rider and you request a ride to go from one place to another. Your driver just arrived at the parking lot of your place. The only thing you know about the ride is the license plate number. How do you find your U…
The greatest common divisor (gcd) of two positive integers is their largest common divisor. Let's consider two numbers 12 and 20. The divisors of 12 are 1, 2, 3, 4, 6, 12 The divisors of 20 are 1, 2, 4, 5, 10 20 The highest number among the c…
Migrating to Microsoft Office 365 is becoming increasingly popular for organizations both large and small. If you have made the leap to Microsoft’s cloud platform, you know that you will need to create a corporate email signature for your Office 365…
Internet Business Fax to Email Made Easy - With  eFax Corporate (http://www.enterprise.efax.com), you'll receive a dedicated online fax number, which is used the same way as a typical analog fax number. You'll receive secure faxes in your email, f…

920 members asked questions and received personalized solutions in the past 7 days.

Join the community of 500,000 technology professionals and ask your questions.

Join & Ask a Question

Need Help in Real-Time?

Connect with top rated Experts

13 Experts available now in Live!

Get 1:1 Help Now