Solved

How do you find and remove a seam when doing seam carving in Python for image processing?

Posted on 2014-10-26
1
483 Views
Last Modified: 2014-10-28
I am implementing the seam carving algorithm in Python, which is used to resize and manipulate images.

See the following links for an explanation of the seam carving algorithm:
http://cs.brown.edu/courses/cs129/results/proj3/taox/
http://www.cs.princeton.edu/courses/archive/spring13/cos226/assignments/seamCarving.html

The dual_gradient_energy function computes the energy of each pixel of the image.

I am trying to find the horizontal seam of the image.

The function is supposed to return an array of H (height) integers. For each row, it should return the column of the seam.

I am unable to get the find_seam function to work. Instead of returning pixels in integers, the values being returned in the array are in scientific notation. I made sure to check boundary cases so that it does not fill an array with an invalid/nonexistent element.

Plot_seam should plot the seam on the image and highlight it in red. I have it implemented already, but I have not been able to test it since there is no seam to plot. Once the find_seam function is fixed, then a seam can be plotted.

Remove_seam function modifies the image in-place and returns a W-1 (width) x H x 3 (height) slice. In essence, it removes the seam from the image. I am having trouble implementing this because the array indices seem to be out of bounds.

I have provided an image (someimage.png) to use for testing the functions.

I am using Python 2.7.

Required Python libraries (for Windows 32-bit):

numpy-MKL-1.9.0.win32-py2.7
scipy-0.14.0-win32-superpack-python2.7
scikit-image-0.10.1.win32-py2.7
matplotlib-1.4.0.win32-python2.7
python-dateutil-2.2.win32-py2.7
pyparsing-2.0.3.win32-py2.7

What is wrong with my find_seam and remove_seam functions? How can I fix my code?

Note: You may need to close the graph that is generated when you run the source code in order to see the find_seam, plot_seam, and remove_seam function calls.

See my code below:

import numpy
import scipy.misc as scm
from pylab import *
from scipy import ndimage
from skimage import img_as_float, filter


def dual_gradient_energy(img):
    R = img[:, :, 0]
    G = img[:, :, 1]
    B = img[:, :, 2]
    hColorR = filter.hsobel(R)
    vColorR = filter.vsobel(R)
    hColorG = filter.hsobel(G)
    vColorG = filter.vsobel(G)
    hColorB = filter.hsobel(B)
    vColorB = filter.vsobel(B)

    energyArr = hColorR*hColorR+vColorR*vColorR+hColorG*hColorG+vColorG*vColorG+hColorB*hColorB+vColorB*vColorB

    return energyArr


def find_seam(img):

    height,width = img.shape[:2]
    seamFitness = dual_gradient_energy(img)

    #for i in range(0, width):
        #seamFitness[0][i] = img[0][i]
    for x in range(0, width-2):
        for y in range (1, height-2):
                #seamFitness[x][y] = img[x][y]
            if (x>0) and (x<width) and (y==0):
                seamFitness[x][y] += min(seamFitness[x][y-1], seamFitness[x+1][y-1])
                if (x>0) and (x == width-1):
                    seamFitness[x][y] += min(seamFitness[x][y-1], seamFitness[x-1][y-1])
                    if (x!=0):
                        seamFitness[x][y] += min(seamFitness[x-1][y-1], seamFitness[x][y-1], seamFitness[x+1][y-1])


    return seamFitness[y]


def remove_seam(img,seam):
    attempt = 0
    i = 0
    height,width = img.shape[:2]
    seamFitness = np.zeros((height, width))
    for attempt in range(attempt, img.size):
        bestRow = 0
        for i in range(i, height-img.size):
            if (seamFitness[width-1][bestRow] > seamFitness[width-1][i]):
                bestRow = i
    x = width-1
    if (x > 0):
        theMin = seamFitness[x-1][bestRow]
    if (bestRow > 0 and seamFitness[x-1][bestRow-1] <= theMin):
        bestRow = bestRow-1
    elif (bestRow < height-1 and seamFitness[x-1][bestRow+1] <= theMin):
        bestRow = bestRow+1
    return img

def plot_seam(img, seam):
    height,width,dim = img.shape
    for i in xrange(0,len(seam)):
        img[i][seam[i]][0] = 255
        img[i][seam[i]][1] = 0
        img[i][seam[i]][2] = 0
    #pass

def main():
    img = imread('someimage.png')
    img = img_as_float(img)
    l=dual_gradient_energy(img) #works!
    figure()
    gray()
    imshow(l)
    show()
    r = find_seam(img)
    print r
    s = remove_seam(img, r)
    imshow(plot_seam(img, r))
    show()

if __name__ == '__main__':
    main()

Open in new window

seamcarver.py
someimage.png
0
Comment
Question by:AttilaB
[X]
Welcome to Experts Exchange

Add your voice to the tech community where 5M+ people just like you are talking about what matters.

  • Help others & share knowledge
  • Earn cash & points
  • Learn & ask questions
1 Comment
 
LVL 45

Accepted Solution

by:
aikimark earned 500 total points
ID: 40406953
I would expect a floating point result, based on the definition of the energy gradient formula definition.  If you need integer results, cast the floating-point values into integer values.

I was curious why your x and y for loops have different starting values and (relative) different ending values.

btw...I'm a big fan of this algorithm and, generally, context sensitive resizing.
0

Featured Post

Free Tool: IP Lookup

Get more info about an IP address or domain name, such as organization, abuse contacts and geolocation.

One of a set of tools we are providing to everyone as a way of saying thank you for being a part of the community.

Question has a verified solution.

If you are experiencing a similar issue, please ask a related question

This article was inspired by a question here at Experts Exchange (http://www.experts-exchange.com/Software/Photos_Graphics/Images_and_Photos/Q_28629170.html). The requirements stated in that question are (1) reduce the file size of a large number of…
When there is a disconnect between the intentions of their creator and the recipient, when algorithms go awry, they can have disastrous consequences.
The goal of the tutorial is to teach the user what gradient filters are and how to use them. When you have a photo and some part of the photo is either over exposed or under exposed, you use a gradient filter to help mask the need to touch up th…
The goal of the tutorial is to teach the user the full work flow of how to use flash media encoder to stream onto YouTube.

739 members asked questions and received personalized solutions in the past 7 days.

Join the community of 500,000 technology professionals and ask your questions.

Join & Ask a Question