We help IT Professionals succeed at work.

# Easy maths question

on
152 Views
In a network with N nodes, what's the maximum number of connections you can make?

eg N=2, gives 1 connection, N=3 gives 3, N=4 gives 6, N=5 gives 10, N=6 gives lots etc

I think it's sum of N-i from i=1 to N-1

How many when N=100?

Can I simplify this in terms of N only and what's the function called in maths and/or in Excel or google sheets?

Probably easy but it's been years since i did maths.

Thanks!
Comment
Watch Question

## View Solutions Only

Senior Consultant
CERTIFIED EXPERT
Awarded 2017
Distinguished Expert 2019
Commented:
This problem has been solved!
(Unlock this solution with a 7-day Free Trial)

Commented:
Thanks, I'm looking for a formula that gives the answer straight off.

Just guessing it seems to be N choose 2, that googles to the right answer for 100

Is that right?
Managing Director/Excel VBA Developer
CERTIFIED EXPERT
Distinguished Expert 2018

Commented:
In excel you can use below formula assuming  your data starts from A1:
``````=SUMPRODUCT(LARGE(A1:A100,ROW(INDIRECT("2:100"))))
``````

Commented:
I assume we don't need arrays.

If N choose 2 is the right answer then i can just use that formula, i assume Excel has the function, else a factorial version

Commented:
eg
=FACT(100)/(2*FACT(100-2))

Commented:
or
=COMBIN(100,2)

Commented:
Now i think about it, it all makes sense. THe number of connections is the number of ways you can choose two nodes from the whole set.

Commented:
Thanks all for your input and helping me get to an answer quickly.
Managing Director/Excel VBA Developer
CERTIFIED EXPERT
Distinguished Expert 2018

Commented:
Why you need to send close request? right away accept Shaun's solution and it will close automatically.
Principal
CERTIFIED EXPERT

Commented:
In a network with N nodes, what's the maximum number of connections you can make?

eg N=2, gives 1 connection, N=3 gives 3, N=4 gives 6, N=5 gives 10, N=6 gives lots etc

I think it's sum of N-i from i=1 to N-1
Consider this:
Starting with "n" nodes, each node added gets N nodes.
So the formula is a sum of added connections.
The number of connections is a sequence: 1,2,3,6,12,
1 to 2 adds 1 for 1 total
2 to 3 adds 2 for 3 total
3 to 4 adds 3 for 6 total
4 to 5 adds 4 for 10 total
99 to 100 adds 99 >> so we will call M=N-1 as the sequence ends at N-1
SUM over k=1:M (1:k-1) which is done with a well-known formula M*(M+1)/2
Check:
M=1>>1*(1+1)/2=1
M=2>>2*(2+1)/2=3
M=3>>3*(3+1)/2=6
M=4>>4*(4+1)/2=10
.
M=99>>99*(99+1)/2=4,950

In this case, you have to be careful because there are N nodes and N-1 added connections.  Thus M=N-1
How many when N=100?
4,950

Can I simplify this in terms of N only
Yes. As above.
what's the function called in maths
Partial sum of integers
and/or in Excel or google sheets? SUM
Principal
CERTIFIED EXPERT

Commented:

Commented:
Thanks Fred, that's a good point. I will request to defer closing so I can re-assign points.

Commented:
Nice formula btw, i see now how it's equivalent to the general case attached.
Principal
CERTIFIED EXPERT
Commented:
This problem has been solved!
(Unlock this solution with a 7-day Free Trial)
Principal
CERTIFIED EXPERT

Commented:
I rather hate to do this but it seems technically proper if not socially proper....

Gain unlimited access to on-demand training courses with an Experts Exchange subscription.

###### Why Experts Exchange?

Experts Exchange always has the answer, or at the least points me in the correct direction! It is like having another employee that is extremely experienced.

Jim Murphy
Programmer at Smart IT Solutions

Deciding to stick with EE.

Mohamed Asif

Being involved with EE helped me to grow personally and professionally.

Carl Webster
CTP, Sr Infrastructure Consultant
###### Did You Know?

We've partnered with two important charities to provide clean water and computer science education to those who need it most. READ MORE